Skip to main content
Log in

Enhancing single-molecule conductance of platinum(II) complexes through synergistic aromaticity-assisted structural asymmetry

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Seeking the strategies of designing highly conductive molecular structures is one of the core researches in molecular electronics. As asymmetric structure has manifested feasible properties in comprehensive fields, we introduce the structures of asymmetric platinum(II) complexes into the charge transport study at single-molecule scale for the first time. The single-molecule conductance measurement results reveal that, in platinum(II)-aryloligoynyl structures, the conductance of asymmetrically coordinated complexes is obviously higher than that of the symmetric isomers with the same molecular length, while the conductance is almost identical in symmetric and asymmetric platinum(II)-oligoynyl complexes Theoretical study uncovers that, upon connecting to the oligoynyl structure, the aromatic group effectively extends the π-system of the whole conductive backbone and gathers the HOMO population mainly on the longer oligoynyl ligand, which reduces the energy barrier in electron transport and enhances the conductance through HOMO energy lifting. This result provides feasible strategy for achieving high conductive molecular devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nitzan A, Ratner MA. Science, 2003, 300: 1384–1389

    Article  CAS  PubMed  Google Scholar 

  2. Sun L, Diaz-Fernandez YA, Gschneidtner TA, Westerlund F, Lara-Avila S, Moth-Poulsen K. Chem Soc Rev, 2014, 43: 7378–7411

    Article  CAS  PubMed  Google Scholar 

  3. González MT, Díaz A, Leary E, García R, Herranz MÁ, Rubio-Bollinger G, Martín N, Agraït N. J Am Chem Soc, 2013, 135: 5420–5426

    Article  CAS  PubMed  Google Scholar 

  4. Aradhya SV, Meisner JS, Krikorian M, Ahn S, Parameswaran R, Steigerwald ML, Nuckolls C, Venkataraman L. Nano Lett, 2012, 12: 1643–1647

    Article  CAS  PubMed  Google Scholar 

  5. Guédon CM, Valkenier H, Markussen T, Thygesen KS, Hummelen JC, van der Molen SJ. Nat Nanotech, 2012, 7: 305–309

    Article  CAS  Google Scholar 

  6. Manrique DZ, Huang C, Baghernejad M, Zhao X, Al-Owaedi OA, Sadeghi H, Kaliginedi V, Hong W, Gulcur M, Wandlowski T, Bryce MR, Lambert CJ. Nat Commun, 2015, 6: 6389

    Article  CAS  PubMed  Google Scholar 

  7. Zhang D, Wang Q. Coord Chem Rev, 2015, 286: 1–16

    Article  CAS  Google Scholar 

  8. Zhang Z, Wen L, Jiang L. Chem Soc Rev, 2018, 47: 322–356

    Article  CAS  PubMed  Google Scholar 

  9. Gao W, Zhang Z, Li PF, Tang YY, Xiong RG, Yuan G, Ren S. ACS Nano, 2017, 11: 11739–11745

    Article  CAS  PubMed  Google Scholar 

  10. Aviram A, Ratner MA. Chem Phys Lett, 1974, 29: 277–283

    Article  CAS  Google Scholar 

  11. Ai Y, Kovalchuk A, Qiu X, Zhang Y, Kumar S, Wang X, Kühnel M, Nørgaard K, Chiechi RC. Nano Lett, 2018, 18: 7552–7559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nijhuis CA, Reus WF, Whitesides GM. J Am Chem Soc, 2010, 132: 18386–18401

    Article  CAS  PubMed  Google Scholar 

  13. Nijhuis CA, Reus WF, Barber JR, Dickey MD, Whitesides GM. Nano Lett, 2010, 10: 3611–3619

    Article  CAS  PubMed  Google Scholar 

  14. Busiakiewicz A, Karthäuser S, Homberger M, Kowalzik P, Waser R, Simon U. Phys Chem Chem Phys, 2010, 12: 10518–10524

    Article  CAS  PubMed  Google Scholar 

  15. Lambert CJ, Liu SX. Chem Eur J, 2018, 24: 4193–4201

    Article  CAS  PubMed  Google Scholar 

  16. Wen HM, Yang Y, Zhou XS, Liu JY, Zhang DB, Chen ZB, Wang JY, Chen ZN, Tian ZQ. Chem Sci, 2013, 4: 2471–2477

    Article  CAS  Google Scholar 

  17. Al-Owaedi OA, Bock S, Milan DC, Oerthel MC, Inkpen MS, Yufit DS, Sobolev AN, Long NJ, Albrecht T, Higgins SJ, Bryce MR, Nichols RJ, Lambert CJ, Low PJ. Nanoscale, 2017, 9: 9902–9912

    Article  CAS  PubMed  Google Scholar 

  18. Al-Owaedi OA, Milan DC, Oerthel MC, Bock S, Yufit DS, Howard JAK, Higgins SJ, Nichols RJ, Lambert CJ, Bryce MR, Low PJ. Organometallics, 2016, 35: 2944–2954

    Article  CAS  Google Scholar 

  19. Bock S, Al-Owaedi OA, Eaves SG, Milan DC, Lemmer M, Skelton BW, Osorio HM, Nichols RJ, Higgins SJ, Cea P, Long NJ, Albrecht T, Martín S, Lambert CJ, Low PJ. Chem Eur J, 2017, 23: 2133–2143

    Article  CAS  PubMed  Google Scholar 

  20. Moreno-García P, Gulcur M, Manrique DZ, Pope T, Hong W, Kaliginedi V, Huang C, Batsanov AS, Bryce MR, Lambert C, Wandlowski T. J Am Chem Soc, 2013, 135: 12228–12240

    Article  CAS  PubMed  Google Scholar 

  21. Huang C, Rudnev AV, Hong W, Wandlowski T. Chem Soc Rev, 2015, 44: 889–901

    Article  CAS  PubMed  Google Scholar 

  22. Borges A, Xia J, Liu SH, Venkataraman L, Solomon GC. Nano Lett, 2017, 17: 4436–4442

    Article  CAS  PubMed  Google Scholar 

  23. Walkey MC, Peiris CR, Ciampi S. C. Aragonés A, Domínguez-Espíndola RB, Jago D, Pulbrook T, Skelton BW, Sobolev AN, Díez Pérez I, Piggott MJ, Koutsantonis GA, Darwish N. ACS Appl Mater Interfaces, 2019, 11: 36886–36894

    Article  CAS  PubMed  Google Scholar 

  24. Li R, Lu Z, Cai Y, Jiang F, Tang C, Chen Z, Zheng J, Pi J, Zhang R, Liu J, Chen ZB, Yang Y, Shi J, Hong W, Xia H. J Am Chem Soc, 2017, 139: 14344–14347

    Article  CAS  PubMed  Google Scholar 

  25. Liu J, Zhao X, Al-Galiby Q, Huang X, Zheng J, Li R, Huang C, Yang Y, Shi J, Manrique DZ, Lambert CJ, Bryce MR, Hong W. Angew Chem Int Ed, 2017, 56: 13061–13065

    Article  CAS  Google Scholar 

  26. Liu J, Zhao X, Zheng J, Huang X, Tang Y, Wang F, Li R, Pi J, Huang C, Wang L, Yang Y, Shi J, Mao BW, Tian ZQ, Bryce MR, Hong W. Chem, 2019, 5: 390–401

    Article  CAS  Google Scholar 

  27. Zheng J, Liu J, Zhuo Y, Li R, Jin X, Yang Y, Chen ZB, Shi J, Xiao Z, Hong W, Tian ZQ. Chem Sci, 2018, 9: 5033–5038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sonogashira K, Tohda Y, Hagihara N. Tetrahedron Lett, 1975, 16: 4467–4470

    Article  Google Scholar 

  29. Zhang LY, Duan P, Wang JY, Zhang QC, Chen ZN. J Phys Chem C, 2019, 123: 5282–5288

    Article  CAS  Google Scholar 

  30. Tang C, Zheng J, Ye Y, Liu J, Chen L, Yan Z, Chen Z, Chen L, Huang X, Bai J, Chen Z, Shi J, Xia H, Hong W. iScience, 2020, 100770

  31. Hong W, Manrique DZ, Moreno-García P, Gulcur M, Mishchenko A, Lambert CJ, Bryce MR, Wandlowski T. J Am Chem Soc, 2012, 134: 2292–2304

    Article  CAS  PubMed  Google Scholar 

  32. Untiedt C, Yanson AI, Grande R, Rubio-Bollinger G, Agraït N, Vieira S, van Ruitenbeek JM. Phys Rev B, 2002, 66: 085418

    Article  CAS  Google Scholar 

  33. Frisenda R, Janssen VAEC, Grozema FC, van der Zant HSJ, Renaud N. Nat Chem, 2016, 8: 1099–1104

    Article  CAS  PubMed  Google Scholar 

  34. Scherlis DA, Marzari N. J Am Chem Soc, 2005, 127: 3207–3212

    Article  CAS  PubMed  Google Scholar 

  35. Fu T, Smith S, Camarasa-Gómez M, Yu X, Xue J, Nuckolls C, Evers F, Venkataraman L, Wei S. Chem Sci, 2019, 10: 9998–10002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brandbyge M, Mozos JL, Ordejón P, Taylor J, Stokbro K. Phys Rev B, 2002, 65: 165401

    Article  CAS  Google Scholar 

  37. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D. J Phys-Condens Matter, 2002, 14: 2745–2779

    Article  CAS  Google Scholar 

  38. Taylor J, Guo H, Wang J. Phys Rev B, 2001, 63: 245407

    Article  CAS  Google Scholar 

  39. Stokbro K, Taylor J, Brandbyge M, Guo H. Ab-initio Based Non-Equiblibrium Green’s Function Formalism For Calculating Electron Transport in Molecular Devices. Berlin, Heidelberg: Springer, 2005. 177–151

    Google Scholar 

  40. Atomistix toolkit. Version 2016. 3. QuantumWise A/S. 2016

  41. Su TA, Neupane M, Steigerwald ML, Venkataraman L, Nuckolls C. Nat Rev Mater, 2016, 1: 16002

    Article  CAS  Google Scholar 

  42. Ozawa H, Baghernejad M, Al-Owaedi OA, Kaliginedi V, Nagashima T, Ferrer J, Wandlowski T, García-Suárez VM, Broekmann P, Lambert CJ, Haga MA. Chem Eur J, 2016, 22: 12732–12740

    Article  CAS  PubMed  Google Scholar 

  43. Huong VTT, Tai TB, Jiang JC, Nguyen MT. Phys Chem Chem Phys, 2017, 19: 32536–32543

    Article  Google Scholar 

  44. Cai Z, Lo WY, Zheng T, Li L, Zhang N, Hu Y, Yu L. J Am Chem Soc, 2016, 138: 10630–10635

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21601182, U1405252, 21531008, 21673195, 21703188, 31871877, 21933012), the National Key Research and Development Program of China (2014CB845603, 2017YFA0204902), the CAS/SAFEA International Partnership Program for Creative Research Teams, the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000) and China Postdoctoral Science Foundation (2017M622060).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian-Chong Zhang, Wenjing Hong or Zhong-Ning Chen.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, P., Liu, J., Wang, JY. et al. Enhancing single-molecule conductance of platinum(II) complexes through synergistic aromaticity-assisted structural asymmetry. Sci. China Chem. 63, 467–474 (2020). https://doi.org/10.1007/s11426-019-9692-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9692-3

Keywords

Navigation