Skip to main content
Log in

Inhibition of anaerobic probiotics on colorectal cancer cells using intestinal microfluidic systems

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Intestinal flora play an important role in human’s immune system. Many bacteria adhere to the wall of the testinal wall. These Intestinal flora help digestion, and also stop their disease-causing counterparts from invading. Most of the current researches focused on the interaction between cells and the construction of organs, but few researches studied on the role of microorganisms and cells. Here, we developed an in vitro living cell systems to simulate the structure, absorption, transport and pathophysiological characteristics of the human intestinal tract and the key microbial symbiosis. The co-culture of Clostridium butyricum (C. butyricum) and colon cancer cells showed a different immune effect. C. butyricum could inhibit the proliferation of HCT116 cells, cause cell cycle arrest and promote apoptosis. But it had no significant effect on Caco-2 cells. Thus, basic functional characteristics of the gut were successfully simulated in a controlled microfluidic system. This approach is suggested as a powerful method in the investigation on drug metabolism and intestinal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhao L. Nat Rev Micro, 2013, 11: 639–647

    Article  CAS  Google Scholar 

  2. Neish AS. Gastroenterology, 2009, 136: 65–80

    Article  PubMed  Google Scholar 

  3. Nguyen TLA, Vieira-Silva S, Liston A, Raes J. Dis Model Mech, 2015, 8: 1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Flemer B, Lynch DB, Brown JMR, Jeffery IB, Ryan FJ, Claesson MJ, O’Riordain M, Shanahan F, O’Toole PW. Gut, 2017, 66: 633–643

    Article  CAS  PubMed  Google Scholar 

  5. Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, Ståhlman M, Olsson LM, Serino M, Planas-Fèlix M, Xifra G, Mercader JM, Torrents D, Burcelin R, Ricart W, Perkins R, Fernàndez-Real JM, Bäckhed F. Nat Med, 2017, 23: 850–858

    Article  CAS  PubMed  Google Scholar 

  6. Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T, Jakobshagen K, Buch T, Schwierzeck V, Utermöhlen O, Chun E, Garrett WS, McCoy KD, Diefenbach A, Staeheli P, Stecher B, Amit I, Prinz M. Nat Neurosci, 2015, 18: 965–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Balagopal A, Philp FH, Astemborski J, Block TM, Mehta A, Long R, Kirk GD, Mehta SH, Cox AL, Thomas DL, Ray SC. Gastroenterology, 2008, 135: 226–233

    Article  CAS  PubMed  Google Scholar 

  8. Han JL, Lin HL. World J Gastroenterol, 2014, 20: 17737–17745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. PLoS Biol, 2007, 5: e177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McCafferty J, Mühlbauer M, Gharaibeh RZ, Arthur JC, Perez-Chanona E, Sha W, Jobin C, Fodor AA. ISME J, 2013, 7: 2116–2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li D, Gromov K, Søballe K, Puzas JE, O’Keefe RJ, Awad H, Drissi H, Schwarz EM. J Orthop Res, 2010, 26: 96–105

    Article  CAS  Google Scholar 

  12. Liu JJ, Gao D, Mao SF, Lin JM. Sci China Chem, 2012, 55: 494–501

    Article  CAS  Google Scholar 

  13. Chen C, Yang G, Geng XR, Wang X, Liu Z, Yang PC. PLoS ONE, 2012, 7: e45941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pandori MW, Sano T. Gene Ther, 2005, 12: 521–533

    Article  CAS  PubMed  Google Scholar 

  15. Tillinger W, McCole DF, Keely SJ, Bertelsen LS, Wolf PL, Junger WG, Barrett KE. Am J Phys, 2008, 295: R1839–R1845

    CAS  Google Scholar 

  16. Kim HJ, Huh D, Hamilton G, Ingber DE. Lab Chip, 2012, 12: 2165–2174

    Article  CAS  PubMed  Google Scholar 

  17. Bhatia SN, Ingber DE. Nat Biotechnol, 2014, 32: 760–772

    Article  CAS  PubMed  Google Scholar 

  18. Zheng CH, Chen G’, Pang YH, Huang YY. Sci China Chem, 2012, 55: 502–507

    Article  CAS  Google Scholar 

  19. Choe A, Sang KH, Choi I, Choi N, Sung JH. Biomed Microdev, 2017, 9-4: 1–11

    Google Scholar 

  20. Chen WW, Li TS, He S, Liu DB, Wang Z, Zhang W, Jiang XY. Sci China Chem, 2011, 54: 1227–1232

    Article  CAS  Google Scholar 

  21. Shah P, Fritz JV, Glaab E, Desai MS, Greenhalgh K, Frachet A, Niegowska M, Estes M, Jäger C, Seguin-Devaux C, Zenhausern F, Wilmes P. Nat Commun, 2016, 7: 11535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Seki H, Shiohara M, Matsumura T, Miyagawa N, Tanaka M, Komiyama A, Kurata S. Pediatr Int, 2010, 45: 86–90

    Article  Google Scholar 

  23. Elimrani I, Dionne S, Saragosti D, Qureshi I, Levy E, Delvin E, Seidman EG. Int J Oncol, 2015, 47: 755–763

    Article  CAS  PubMed  Google Scholar 

  24. Fung KYC, Brierley GV, Henderson S, Hoffmann P, McColl SR, Lockett T, Head R, Cosgrove L. J Proteome Res, 2011, 10: 1860–1869

    Article  CAS  PubMed  Google Scholar 

  25. Wei ZL, Zhao QL, Yu DY, Hassan MA, Kondo T. Anticancer Res, 2008, 28: 1693–1700

    CAS  PubMed  Google Scholar 

  26. Tan HT, Tan S, Lin Q, Lim TK, Hew CL, Chung MCM. Mol Cell Proteom, 2008, 7: 1174–1185

    Article  CAS  Google Scholar 

  27. Mata A, Fleischman AJ, Roy S. Biomed Microdev, 2005, 7: 281–293

    Article  CAS  Google Scholar 

  28. Rajput A, Dominguez San Martin I, Rose R, Beko A, Levea C, Sharratt E, Mazurchuk R, Hoffman RM, Brattain MG, Wang J. J Surgical Res, 2008, 147: 276–281

    Article  CAS  Google Scholar 

  29. Han A, Bennett N, MacDonald A, Johnstone M, Whelan J, Donohoe DR. J Cell Physiol, 2015, 231: 1804–1813

    Article  CAS  PubMed  Google Scholar 

  30. Jang KJ, Suh KY. Lab Chip, 2010, 10: 36–42

    Article  CAS  PubMed  Google Scholar 

  31. Weng Y, Zeng H, Nakagawa Y, Ikeda S, Chen F, Nakajima H, Uchiyama K. Chromatography, 2015, 34: 33–40

    Article  Google Scholar 

  32. Mu X, Zheng W, Sun J, Zhang W, Jiang X. Small, 2013, 9: 969–969

    Article  CAS  Google Scholar 

  33. Vanhoutvin SALW, Troost FJ, Hamer HM, Lindsey PJ, Koek GH, Jonkers DMAE, Kodde A, Venema K, Brummer RJM. PLoS ONE, 2009, 4: e6759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kuroiwa-Trzmielina J, de Conti A, Scolastici C, Pereira D, Horst MA, Purgatto E, Ong TP, Moreno FS. Int J Cancer, 2010, 124: 2520–2527

    Article  CAS  Google Scholar 

  35. Margineantu DH, Gregory Cox W, Sundell L, Sherwood SW, Beechem JM, Capaldi RA. Mitochondrion, 2002, 1: 425–435

    Article  CAS  PubMed  Google Scholar 

  36. Wang L, Luo HS, Xia H. J Int Med Res, 2009, 37: 803–811

    Article  CAS  PubMed  Google Scholar 

  37. Siddiqui WA, Ahad A, Ahsan H. Arch Toxicol, 2015, 89: 289–317

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (2016JX03), and the National Natural Science Foundation of China (21435002, 31400085, 81373373).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangwei He or Jin-Ming Lin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Mao, S., Huang, Q. et al. Inhibition of anaerobic probiotics on colorectal cancer cells using intestinal microfluidic systems. Sci. China Chem. 61, 1034–1042 (2018). https://doi.org/10.1007/s11426-018-9243-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9243-3

Keywords

Navigation