Skip to main content
Log in

Diamond-structured hollow-tube lattice Ni materials via 3D printing

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Light-weight and high-strength materials have attracted considerable attention owing to their outstanding properties, such as weight-reducing, acoustic absorption, thermal insulation, shock and vibration damping. Diamond possesses specific stiffness and strength arising from its special crystal structure. In this work, inspired by the diamond crystal structure, hollow-tube nickel materials with the diamond structure were fabricated using a diamond structured polymer template based on the Stereo Lithography Appearance technology. The diamond structured template was coated with Ni-P by electroless plating. Finally, the template was removed by high temperature calcinations. The density of the hollow tube nickel materials is about 20 mg/cm3. The morphology and composition of the resultant materials were characterized by scanning electron microscope, energy-dispersive spectrometry, and X-ray diffraction. The results showed that the surface of the Ni film was uniform with the thickness of 4 μm. The mechanical property was also measured by stress and strain tester. The maximum compression stress can be reached to 40.6 KPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evans AG, Hutchinson JW, Fleck NA, Ashby MF, Wadley HNG. Prog Mater Sci, 2001, 46: 309–327

    Article  CAS  Google Scholar 

  2. Liu Z. Science, 2000, 289: 1734–1736

    Article  CAS  Google Scholar 

  3. Kim T, Zhao CY, Lu TJ, Hodson HP. Mech Mater, 2004, 36: 767–780

    Article  Google Scholar 

  4. Barrett DJ. Vibration-damping structural member US Patent: 5087491, 1992

    Google Scholar 

  5. Jeker R, Reiser R. Vibration-damping mount US Patent: 5238215, 1993

    Google Scholar 

  6. Maloney KJ, Roper CS, Jacobsen AJ, Carter WB, Valdevit L, Schaedler TA. APL Mater, 2013, 1: 022106

    Article  Google Scholar 

  7. Jang WY, Kyriakides S, Kraynik AM. Int J Solids Struct, 2010, 47: 2872–2883

    Article  CAS  Google Scholar 

  8. Takahashi Y, Okumura D, Ohno N. Int J Mechl Sci, 2010, 52: 377–385

    Article  Google Scholar 

  9. Ahn SH, Lee HJ, Kim GH. Biomacromolecules, 2011, 12: 4256–4263

    Article  CAS  Google Scholar 

  10. Lu T, Valdevit L, Evans A. Prog Mater Sci, 2005, 50: 789–815

    Article  Google Scholar 

  11. Maloney KJ, Fink KD, Schaedler TA, Kolodziejska JA, Jacobsen AJ, Roper CS. Int J Heat Mass Transfer, 2012, 55: 2486–2493

    Article  CAS  Google Scholar 

  12. Brandner JJ, Anurjew E, Bohn L, Hansjosten E, Henning T, Schygulla U, Wenka A, Schubert K. Exp Thermal Fluid Sci, 2006, 30: 801–809

    Article  CAS  Google Scholar 

  13. Ryan TM, Shaw CN. Proc R Soc B-Biol Sci, 2013, 280: 20130172–20130172

    Article  Google Scholar 

  14. Moreau LM, Ha DH, Bealing CR, Zhang H, Hennig RG, Robinson RD. Nano Lett, 2012, 12: 4530–4539

    Article  CAS  Google Scholar 

  15. Zheng X, Lee H, Weisgraber TH, Shusteff M, De Otte J, Duoss EB, Kuntz JD, Biener MM, Ge Q, Jackson JA, Kucheyev SO, Fang NX, Spadaccini CM. Science, 2014, 344: 1373–1377

    Article  CAS  Google Scholar 

  16. Verdooren A, Chan HM, Grenestedt JL, Harmer MP, Caram HS. J Am Ceramic Soc, 2006, 89: 3101–3106

    Article  CAS  Google Scholar 

  17. Tappan BC, Huynh MH, Hiskey MA, Chavez DE, Luther EP, Mang JT, Son SF. J Am Chem Soc, 2006, 128: 6589–6594

    Article  CAS  Google Scholar 

  18. Deshpande VS, Fleck NA, Ashby MF. J Mech Phys Solids, 2001, 49: 1747–1769

    Article  CAS  Google Scholar 

  19. Zou J, Liu J, Karakoti AS, Kumar A, Joung D, Li Q, Khondaker SI, Seal S, Zhai L. ACS Nano, 2010, 4: 7293–7302

    Article  CAS  Google Scholar 

  20. Hu H, Zhao Z, Wan W, Gogotsi Y, Qiu J. Adv Mater, 2013, 25: 2219–2223

    Article  CAS  Google Scholar 

  21. Tillotson TM, Hrubesh LW. J Non-Crystline Solids, 1992, 145: 44–50

    Article  CAS  Google Scholar 

  22. Schaedler TA, Jacobsen AJ, Torrents A, Sorensen AE, Lian J, Greer JR, Valdevit L, Carter WB. Science, 2011, 334: 962–965

    Article  CAS  Google Scholar 

  23. Mecklenburg M, Schuchardt A, Mishra YK, Kaps S, Adelung R, Lotnyk A, Kienle L, Schulte K. Adv Mater, 2012, 24: 3486–3490

    Article  CAS  Google Scholar 

  24. Xiong J, Mines R, Ghosh R, Vaziri A, Ma L, Ohrndorf A, Christ HJ, Wu L. Adv Eng Mater, 2015, 17: 1253–1264

    Article  CAS  Google Scholar 

  25. Zhu C, Han TYJ, Duoss EB, Golobic AM, Kuntz JD, Spadaccini CM, Worsley MA. Nat Commun, 2015, 6: 6962

    Article  CAS  Google Scholar 

  26. do Rosário JJ, Lilleodden ET, Waleczek M, Kubrin R, Petrov AY, Dyachenko PN, Sabisch JEC, Nielsch K, Huber N, Eich M, Schneider GA. Adv Eng Mater, 2015, 17: 1420–1424

    Article  Google Scholar 

  27. Meza LR, Das S, Greer JR. Science, 2014, 345: 1322–1326

    Article  CAS  Google Scholar 

  28. Symons DD, Fleck NA. J Appl Mech, 2008, 75: 051011

    Article  Google Scholar 

  29. Deshpande VS, Ashby MF, Fleck NA. Acta Mater, 2001, 49: 1035–1040

    Article  CAS  Google Scholar 

  30. Alkhader M, Vural M. Int J Eng Sci, 2008, 46: 1035–1051

    Article  Google Scholar 

  31. Romijn NER, Fleck NA. J Mech Phys Solids, 2007, 55: 2538–2564

    Article  CAS  Google Scholar 

  32. Oliver WC, Pharr GM. J Mater Res, 1992, 7: 1564–1583

    Article  CAS  Google Scholar 

  33. Li H, Vlassak JJ. J Mater Res, 2009, 24: 1114–1126

    Article  CAS  Google Scholar 

  34. Schaedler TA, Jacobsen AJ, Carter WB. Science, 2013, 341: 1181–1182

    Article  CAS  Google Scholar 

  35. Geissler M, Xia Y. Adv Mater, 2004, 16: 1249–1269

    Article  CAS  Google Scholar 

  36. Sun C, Fang N, Wu DM, Zhang X. Sensors Actuators A-Phys, 2005, 121: 113–120

    Article  CAS  Google Scholar 

  37. Zheng X, Deotte J, Alonso MP, Farquar GR, Weisgraber TH, Gemberling S, Lee H, Fang N, Spadaccini CM. Rev Sci Instrum, 2012, 83: 125001–125001

    Article  Google Scholar 

  38. Kitson PJ, Rosnes MH, Sans V, Dragone V, Cronin L. Lab Chip, 2012, 12: 3267–3271

    Article  CAS  Google Scholar 

  39. Sun K, Wei TS, Ahn BY, Seo JY, Dillon SJ, Lewis JA. Adv Mater, 2013, 25: 4539–4543

    Article  CAS  Google Scholar 

  40. Joe Lopes A, MacDonald E, Wicker RB. Rapid Prototyping J, 2012, 18: 129–143

    Article  Google Scholar 

  41. Woesz A, Rumpler M, Stampfl J, Varga F, Fratzl-Zelman N, Roschger P, Klaushofer K, Fratzl P. Mater Sci Eng-C, 2005, 25: 181–186

    Article  Google Scholar 

  42. Stampfl J, Liska R. Macromol Chem Phys, 2005, 206: 1253–1256

    Article  CAS  Google Scholar 

  43. Fu Y, Zhang L, Zheng J. SCI CHINA SER B, 2006, 49: 238–245

    Article  CAS  Google Scholar 

  44. Jacobsen AJ, Barvosa-Carter W, Nutt S. Adv Mater, 2007, 19: 3892–3896

    Article  CAS  Google Scholar 

  45. Deshpande VS, Ashby MF, Fleck NA. Acta Mater, 2001, 49: 1035–1040

    Article  CAS  Google Scholar 

  46. Ashby MF. Philos Trans R Soc A-Math Phys Eng Sci, 2006, 364: 15–30

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglin Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Gao, Y., Huang, H. et al. Diamond-structured hollow-tube lattice Ni materials via 3D printing. Sci. China Chem. 59, 1632–1637 (2016). https://doi.org/10.1007/s11426-016-0093-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0093-x

Keywords

Navigation