Skip to main content
Log in

New progress in theoretical studies on palladium-catalyzed C−C bond-forming reaction mechanisms

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

This review reports a series of mechanistic studies on Pd-catalyzed C−C cross-coupling reactions via density functional theory (DFT) calculations. A brief introduction of fundamental steps involved in these reactions is given, including oxidative addition, transmetallation and reductive elimination. We aim to provide an important review of recent progress on theoretical studies of palladium-catalyzed carbon–carbon cross-coupling reactions, including the C−C bond formation via C−H bond activation, decarboxylation, Pd(II)/Pd(IV) catalytic cycle and double palladiums catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Engle KM, Mei TS, Wasa M, Yu JQ. Acc Chem Res, 2012, 45: 788–802

    Article  CAS  Google Scholar 

  2. Campbell AN, Stahl SS. Acc Chem Res, 2012, 45: 851–863

    Article  CAS  Google Scholar 

  3. Xie H, Zhang H, Lin Z. Organometallics, 2013, 32: 2336–2343

    Article  CAS  Google Scholar 

  4. Fan T, Chen X, Lin Z. Chem Commun, 2012, 48: 10808–10828

    Article  CAS  Google Scholar 

  5. Siegbahn PEM, Tye JW, Hall MB. Chem Rev, 2007, 107: 4414–4435

    Article  CAS  Google Scholar 

  6. Stille JK. Angew Chem Int Ed, 1986, 25: 508–524

    Article  Google Scholar 

  7. Negishi E, King AO, Okukado N. J Org Chem, 1977, 42: 1821–1823

    Article  CAS  Google Scholar 

  8. Xue L, Lin Z. Chem Soc Rev, 2010, 39: 1692–1705

    Article  CAS  Google Scholar 

  9. García-Melchor M, Braga AAC, Lledós A, Ujaque G, Maseras F. Acc Chem Res, 2013, 46: 2626–2634

    Article  CAS  Google Scholar 

  10. Xu X, Truhlar DG. J Chem Theor Comput, 2012, 8: 80–90

    Article  CAS  Google Scholar 

  11. Kang R, Yao J, Chen H. J Chem Theor Comput, 2013, 9: 1872–1879

    Article  CAS  Google Scholar 

  12. Becke AD. J Chem Phys, 1993, 98: 5648–5652

    Article  CAS  Google Scholar 

  13. Zhao Y, Truhlar DG. Theor Chem Account, 2008, 120: 215–241

    Article  CAS  Google Scholar 

  14. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C. Phys Rev B, 1993, 48: 4978–4978

    Article  CAS  Google Scholar 

  15. Jiang YY, Zhang Q, Yu HZ, Fu Y. ACS Catal, 2015, 5: 1414–1423

    Article  CAS  Google Scholar 

  16. Li B, Bi S, Liu Y, Ling B, Li P. Organometallics, 2014, 33: 3453–3463

    Article  CAS  Google Scholar 

  17. Grimme S. J Chem Phys, 2006, 124: 034108

    Article  CAS  Google Scholar 

  18. Schwabe T, Grimme S. Phys Chem Chem Phys, 2007, 9: 3397–3406

    Article  CAS  Google Scholar 

  19. Lyngvi E, Sanhueza IA, Schoenebeck F. Organometallics, 2015, 34: 805–812

    Article  CAS  Google Scholar 

  20. Zhugralin AR, Kobylianskii IJ, Chen P. Organometallics, 2015, 34: 1301–1306

    Article  CAS  Google Scholar 

  21. Ahlquist MSG, Norrby PO. Angew Chem Int Ed, 2011, 50: 11794–11797

    Article  CAS  Google Scholar 

  22. Lonsdale R, Harvey JN, Mulholland AJ. J Phys Chem Lett, 2010, 1: 3232–3237

    Article  CAS  Google Scholar 

  23. Svensson F, Mane RS, Sävmarker J, Larhed M, Sköld C. Organometallics, 2013, 32: 490–497

    Article  CAS  Google Scholar 

  24. Rydfjord J, Svensson F, Trejos A, Sjöberg PJR, Sköld C, Sävmarker J, Odell LR, Larhed M. Chem Eur J, 2013, 19: 13803–13810

    Article  CAS  Google Scholar 

  25. Proutiere F, Lyngvi E, Aufiero M, Sanhueza IA, Schoenebeck F. Organometallics, 2014, 33: 6879–6884

    Article  CAS  Google Scholar 

  26. Xing YM, Zhang L, Fang DC. Organometallics, 2015, 34: 770–777

    Article  CAS  Google Scholar 

  27. Dapprich S, Komáromi I, Byun KS, Morokuma K, Frisch MJ. J Mol Struct-Theochem, 1999, 461–462: 1–21

    Article  Google Scholar 

  28. Zhao Y, Schultz NE, Truhlar DG. J Chem Theor Comput, 2006, 2: 364–382

    Article  CAS  Google Scholar 

  29. Xie H, Lin F, Yang L, Chen X, Ye X, Tian X, Lei Q, Fang W. J Organomet Chem, 2013, 745-746: 417–422

    Article  CAS  Google Scholar 

  30. Xie H, Sun Q, Ren G, Cao Z. J Org Chem, 2014, 79: 11911–11921

    Article  CAS  Google Scholar 

  31. Xie H, Zhao L, Yang L, Lei Q, Fang W, Xiong C. J Org Chem, 2014, 79: 4517–4527

    Article  CAS  Google Scholar 

  32. Barone V, Cossi M. J Phys Chem A, 1998, 102: 1995–2001

    Article  CAS  Google Scholar 

  33. Cossi M, Rega N, Scalmani G, Barone V. J Comput Chem, 2003, 24: 669–681

    Article  CAS  Google Scholar 

  34. Tomasi J, Mennucci B, Cammi R. Chem Rev, 2005, 105: 2999–3094

    Article  CAS  Google Scholar 

  35. Cancès E, Mennucci B, Tomasi J. J Chem Phys, 1997, 107: 3032–3041

    Article  Google Scholar 

  36. Zhang L, Fang DC. J Org Chem, 2013, 78: 2405–2412

    Article  CAS  Google Scholar 

  37. Burks HE, Liu S, Morken JP. J Am Chem Soc, 2007, 129: 8766–8773

    Article  CAS  Google Scholar 

  38. Gourlaouen C, Ujaque G, Lledós A, Medio-Simon M, Asensio G, Maseras F. J Org Chem, 2009, 74: 4049–4054

    Article  CAS  Google Scholar 

  39. Lam KC, Marder TB, Lin Z. Organometallics, 2007, 26: 758–760

    Article  CAS  Google Scholar 

  40. Li Z, Fu Y, Guo QX, Liu L. Organometallics, 2008, 27: 4043–4049

    Article  CAS  Google Scholar 

  41. Fazaeli R, Ariafard A, Jamshidi S, Tabatabaie ES, Pishro KA. J Organomet Chem, 2007, 692: 3984–3993

    Article  CAS  Google Scholar 

  42. Fitton P, Rick EA. J Organomet Chem, 1971, 28: 287–291

    Article  CAS  Google Scholar 

  43. Espinet P, Echavarren AM. Angew Chem Int Ed, 2004, 43: 4704–4734

    CAS  Google Scholar 

  44. Nova A, Ujaque G, Maseras F, Lledós A, Espinet P. J Am Chem Soc, 2006, 128: 14571–14578

    Article  CAS  Google Scholar 

  45. Sugiyama A, Ohnishi Y, Nakaoka M, Nakao Y, Sato H, Sakaki S, Nakao Y, Hiyama T. J Am Chem Soc, 2008, 130: 12975–12985

    Article  CAS  Google Scholar 

  46. Braga AAC, Morgon NH, Ujaque G, Maseras F. J Am Chem Soc, 2005, 127: 9298–9307

    Article  CAS  Google Scholar 

  47. Miyaura N. J Organomet Chem, 2002, 653: 54–57

    Article  CAS  Google Scholar 

  48. Pérez-Rodríguez M, Braga AAC, Garcia-Melchor M, Pérez-Temprano MH, Casares JA, Ujaque G, de Lera AR, Álvarez R, Maseras F, Espinet P. J Am Chem Soc, 2009, 131: 3650–3657

    Article  CAS  Google Scholar 

  49. Anstaett P, Schoenebeck F. Chem Eur J, 2011, 17: 12340–12346

    Article  CAS  Google Scholar 

  50. Xie H, Lin F, Lei Q, Fang W. Organometallics, 2013, 32: 6957–6968

    Article  CAS  Google Scholar 

  51. Wang H, Yang X, Liu Y, Bi S. Organometallics, 2014, 33: 1404–1415

    Article  CAS  Google Scholar 

  52. Lin S, Song CX, Cai GX, Wang WH, Shi ZJ. J Am Chem Soc, 2008, 130: 12901–12903

    Article  CAS  Google Scholar 

  53. Gorelsky SI, Lapointe D, Fagnou K. J Am Chem Soc, 2008, 130: 10848–10849

    Article  CAS  Google Scholar 

  54. Sezen B, Sames D. J Am Chem Soc, 2003, 125: 10580–10585

    Article  CAS  Google Scholar 

  55. Zhang S, Shi L, Ding Y. J Am Chem Soc, 2011, 133: 20218–20229

    Article  CAS  Google Scholar 

  56. Sonogashira K. J Organomet Chem, 2002, 653: 46–49

    Article  CAS  Google Scholar 

  57. Chinchilla R, Nájera C. Chem Rev, 2007, 107: 874–922

    Article  CAS  Google Scholar 

  58. Samantaray MK, Shaikh MM, Ghosh P. J Organomet Chem, 2009, 694: 3477–3486

    Article  CAS  Google Scholar 

  59. John A, Shaikh MM, Ghosh P. Dalton Trans, 2009, 10581

    Google Scholar 

  60. Chen LP, Chen HP. Chinese J Struct Chem, 2011, 30: 1289–1297

    CAS  Google Scholar 

  61. García-Melchor M, Pacheco MC, Nájera C, Lledós A, Ujaque G. ACS Catal, 2012, 2: 135–144

    Article  CAS  Google Scholar 

  62. Sikk L, Tammiku-Taul J, Burk P. Organometallics, 2011, 30: 5656–5664

    Article  CAS  Google Scholar 

  63. Anand M, Sunoj RB, Schaefer HF. J Am Chem Soc, 2014, 136: 5535–5538

    Article  CAS  Google Scholar 

  64. Davies DL, Donald SMA, Macgregor SA. J Am Chem Soc, 2005, 127: 13754–13755

    Article  CAS  Google Scholar 

  65. García-Cuadrado D, Braga AAC, Maseras F, Echavarren AM. J Am Chem Soc, 2006, 128: 1066–1067

    Article  CAS  Google Scholar 

  66. García-Cuadrado D, de Mendoza P, Braga AAC, Maseras F, Echavarren AM. J Am Chem Soc, 2007, 129: 6880–6886

    Article  CAS  Google Scholar 

  67. Shi BF, Maugel N, Zhang YH, Yu JQ. Angew Chem Int Ed, 2008, 47: 4882–4886

    Article  CAS  Google Scholar 

  68. Cong X, Tang H, Wu C, Zeng X. Organometallics, 2013, 32: 6565–6575

    Article  CAS  Google Scholar 

  69. Musaev DG, Kaledin A, Shi BF, Yu JQ. J Am Chem Soc, 2012, 134: 1690–1698

    Article  CAS  Google Scholar 

  70. Larini P, Kefalidis CE, Jazzar R, Renaudat A, Clot E, Baudoin O. Chem Eur J, 2012, 18: 1932–1944

    Article  CAS  Google Scholar 

  71. Yanagisawa S, Ueda K, Sekizawa H, Itami K. J Am Chem Soc, 2009, 131: 14622–14623

    Article  CAS  Google Scholar 

  72. Tang SY, Guo QX, Fu Y. Chem Eur J, 2011, 17: 13866–13876

    Article  CAS  Google Scholar 

  73. Wang DH, Engle KM, Shi BF, Yu JQ. Science, 2010, 327: 315–319

    Article  CAS  Google Scholar 

  74. Lafrance M, Gorelsky SI, Fagnou K. J Am Chem Soc, 2007, 129: 14570–14571

    Article  CAS  Google Scholar 

  75. Dang Y, Qu S, Nelson JW, Pham HD, Wang ZX, Wang X. J Am Chem Soc, 2015, 137: 2006–2014

    Article  CAS  Google Scholar 

  76. Liang Y, Geng W, Wei J, Ouyang K, Xi Z. Org Biomol Chem, 2012, 10: 1537–1542

    Article  CAS  Google Scholar 

  77. Xie H, Zhang H, Lin Z. New J Chem, 2013, 37: 2856–2861

    Article  CAS  Google Scholar 

  78. Figg TM, Wasa M, Yu JQ, Musaev DG. J Am Chem Soc, 2013, 135: 14206–14214

    Article  CAS  Google Scholar 

  79. Musaev DG, Figg TM, Kaledin AL. Chem Soc Rev, 2014, 43: 5009–5031

    Article  CAS  Google Scholar 

  80. Rousseaux S, Davi M, Sofack-Kreutzer J, Pierre C, Kefalidis CE, Clot E, Fagnou K, Baudoin O. J Am Chem Soc, 2010, 132: 10706–10716

    Article  CAS  Google Scholar 

  81. Rousseaux S, Gorelsky SI, Chung BKW, Fagnou K. J Am Chem Soc, 2010, 132: 10692–10705

    Article  CAS  Google Scholar 

  82. Shen Z, Ni Z, Mo S, Wang J, Zhu Y. Chem Eur J, 2012, 18: 4859–4865

    Article  CAS  Google Scholar 

  83. Woolley M, Ariafard A, Khairallah GN, Kwan KHY, Donnelly PS, White JM, Canty AJ, Yates BF, O’Hair RAJ. J Org Chem, 2014, 79: 12056–12069

    Article  CAS  Google Scholar 

  84. Fang P, Li M, Ge H. J Am Chem Soc, 2010, 132: 11898–11899

    Article  CAS  Google Scholar 

  85. Trost BM, Xu J, Schmidt T. J Am Chem Soc, 2009, 131: 18343–18357

    Article  CAS  Google Scholar 

  86. Shang R, Yang ZW, Wang Y, Zhang SL, Liu L. J Am Chem Soc, 2010, 132: 14391–14393

    Article  CAS  Google Scholar 

  87. Li Z, Jiang YY, Yeagley AA, Bour JP, Liu L, Chruma JJ, Fu Y. Chem Eur J, 2012, 18: 14527–14538

    Article  CAS  Google Scholar 

  88. Zhang SL, Fu Y, Shang R, Guo QX, Liu L. J Am Chem Soc, 2010, 132: 638–646

    Article  CAS  Google Scholar 

  89. Fromm A, van Wüllen C, Hackenberger D, Gooßen LJ. J Am Chem Soc, 2014, 136: 10007–10023

    Article  CAS  Google Scholar 

  90. Jiang YY, Fu Y, Liu L. Sci China Chem, 2012, 55: 2057–2062

    Article  CAS  Google Scholar 

  91. Racowski JM, Ball ND, Sanford MS. J Am Chem Soc, 2011, 133: 18022–18025

    Article  CAS  Google Scholar 

  92. Maleckis A, Kampf JW, Sanford MS. J Am Chem Soc, 2013, 135: 6618–6625

    Article  CAS  Google Scholar 

  93. Wang X, Lu Y, Dai HX, Yu JQ. J Am Chem Soc, 2010, 132: 12203–12205

    Article  CAS  Google Scholar 

  94. Lyons TW, Sanford MS. Chem Rev, 2010, 110: 1147–1169

    Article  CAS  Google Scholar 

  95. Canty AJ, Ariafard A, Yates BF, Sanford MS. Organometallics, 2015, 34: 1085–1090

    Article  CAS  Google Scholar 

  96. Lian B, Zhang L, Chass GA, Fang DC. J Org Chem, 2013, 78: 8376–8385

    Article  CAS  Google Scholar 

  97. Zhang SY, Zhang FM, Tu YQ. Chem Soc Rev, 2011, 40: 1937–1949

    Article  CAS  Google Scholar 

  98. Xu LM, Li BJ, Yang Z, Shi ZJ. Chem Soc Rev, 2010, 39: 712–733

    Article  CAS  Google Scholar 

  99. Maestri G, Motti E, Dellaca’ N, Malacria M, Derat E, Catellani M. J Am Chem Soc, 2011, 133: 8574–8585

    Article  CAS  Google Scholar 

  100. Dellaca' N, Maestri G, Malacria M, Derat E, Catellani M. Angew Chem Int Ed, 2011, 50: 12257–12261

    Article  CAS  Google Scholar 

  101. Larraufie MH, Maestri G, Beaume A, Derat É, Ollivier C, Fensterbank L, Courillon C, Lacôte E, Catellani M, Malacria M. Angew Chem Int Ed, 2011, 50: 12253–12256

    Article  CAS  Google Scholar 

  102. Ibañez S, Oresmaa L, Estevan F, Hirva P, Sanaú M, Úbeda MA. Organometallics, 2014, 33: 5378–5391

    Article  CAS  Google Scholar 

  103. Yang J, Li P, Zhang Y, Wang L. J Organomet Chem, 2014, 766: 73–78

    Article  CAS  Google Scholar 

  104. Stambuli JP, Bühl M, Hartwig JF. J Am Chem Soc, 2002, 124: 9346–9347

    Article  CAS  Google Scholar 

  105. Normand AT, Nechaev MS, Cavell KJ. Chem Eur J, 2009, 15: 7063–7073

    Article  CAS  Google Scholar 

  106. Surawatanawong P, Hall MB. Organometallics, 2008, 27: 6222–6232

    Article  CAS  Google Scholar 

  107. Ariafard A, Hyland CJT, Canty AJ, Sharma M, Yates BF. Inorg Chem, 2011, 50: 6449–6457

    Article  CAS  Google Scholar 

  108. Ma S, Villa G, Thuy-Boun PS, Homs A, Yu JQ. Angew Chem Int Ed, 2014, 53: 734–737

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hujun Xie or Ting Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Fan, T., Lei, Q. et al. New progress in theoretical studies on palladium-catalyzed C−C bond-forming reaction mechanisms. Sci. China Chem. 59, 1432–1447 (2016). https://doi.org/10.1007/s11426-016-0018-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0018-2

Keywords

Navigation