Skip to main content
Log in

Adsorption behaviors of strontium using macroporous silica based hexagonal tungsten oxide

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A novel macroporous silica-based hexagonal tungsten oxide (h-WO3/SiO2) with exchangeable sodium cations located in hexagonal tunnel structure was synthesized by a facile hydrothermal treatment of sodium tungstate dihydrate with 1 mol/L HCl solution. Utilization of the h-WO3/SiO2 adsorbent to remove aqueous strontium was investigated under the condition of various pH values, contact time, the initial concentration of metal ions, salt ion concentration, and coexisting ions. According to the experimental data, Sr2+ adsorption equilibrium was achieved within 15 min in acidic solution, and the maximum removal capacity of Sr2+ occurred at pH 4. The kinetic adsorption of Sr2+ on h-WO3/SiO2 was controlled by pseudo second-order model, and the saturated adsorption of Sr2+ on h-WO3/SiO2 was better described by Langmuir and Redlich-Peterson isotherm models compared with the Freundlich isotherm model. The distribution coefficient of Sr2+ was more than 2000 cm3/g in the presence of Ca2+, Mg2+, La3+, and Eu3+, indicating that the h-WO3/SiO2 showed excellent selectivity towards Sr2+ in pH 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Skupinski S, Solecki J. J Geochem Explor, 2014, 145: 124–128

    Article  CAS  Google Scholar 

  2. Ahmadpour A, Zabihi M, Tahmasbi M, Rohani BT. J Hazard Mater, 2010, 182: 552–556

    Article  CAS  Google Scholar 

  3. Rawat N, Mohapatraa PK, Lakshmi DS, Bhattacharyya A, Manchanda VK. J Member Sci, 2006, 275: 82–88

    Article  CAS  Google Scholar 

  4. Volkovich VA, Griffiths TR, Thied RC. J Nucl Mater, 2003, 323: 49–56

    Article  CAS  Google Scholar 

  5. Schulz WW, Bray LA. Sep Sci, 2012, 22: 191–214

    Article  Google Scholar 

  6. Horwitz EP, Dietz ML, Fisher DE. Solvent Extr Ion Exch, 1990: 557–572

    Google Scholar 

  7. Wu Y, Kim SY, Tozawa D, Ito T. J Nucl Sci Technol, 2011, 49: 320–327

    Article  Google Scholar 

  8. Adabbo M, Caputo D, Gennaro BD, Pansini M, Colella C. Microporous Mesoporous Mat, 1999, 28: 315–324

    Article  CAS  Google Scholar 

  9. Mohapatra NRPK, Lakshmi DS, Bhattacharyya A, Manchanda VK. J Member Sci, 2005, 275: 82–88

    Google Scholar 

  10. Chitra S, Viswanathan S, Rao SVS, Sinha PK. J Radioanal Nucl Chem, 2011, 287: 955–960

    Article  CAS  Google Scholar 

  11. Weerasekara NA, Choo K-H, Choi S-J. J Member Sci, 2013, 447: 87–95

    Article  CAS  Google Scholar 

  12. Oancea AMS, Popescu AR, Radulescu M, Weber V. Solvent Extr Ion Exch, 2008, 26: 217–239

    Article  CAS  Google Scholar 

  13. Liu YQ, Yu JT, Cheng SG. J Radioanal Nucl Chem, 2015, 303: 2371–2377

    Article  Google Scholar 

  14. Wang X, Yu JT. J Radioanal Nucl Chem, 2015, 303: 807–813

    Article  CAS  Google Scholar 

  15. Vipin AK, Ling S, Fugetsu B. Carbohydr Polym, 2014, 111: 477–484

    Article  CAS  Google Scholar 

  16. Bascetin E, Atun G. J Chem Eng Data, 2010, 55: 783–788

    Article  CAS  Google Scholar 

  17. Salmaoui S, Sediri F, Gharbi N. Polyhedron, 2010, 29: 1771–1775

    Article  CAS  Google Scholar 

  18. Ha JH, Muralidharan P, Kim DK. J Alloys Compd, 2009, 475: 446–451

    Article  CAS  Google Scholar 

  19. Phuruangrat A, Ham DJ, Hong SJ, Thongtem S, Lee JS. J Mater Chem, 2009, 20: 1683–1690

    Article  Google Scholar 

  20. Wei YZ, Ning SY, Wang QL, Chen Z, Wu Y, Liu RQ, Mimura H. Adv Sci Technol, 2014, 94: 103–110

    Article  Google Scholar 

  21. Xing LL, Mu WJ, Liu BJ, Zhong WB, Wei HY. J Radioanal Nucl Chem, 2013, 298: 47–53

    Article  Google Scholar 

  22. Wu Y, Kim S-Y, Tozawa D, Ito T. J Nucl Sci Technol, 2012, 293: 13–20

    CAS  Google Scholar 

  23. Admadi SJ, Akbari N, Shiri-Yekta Z. J Radioanal Nucl Chem, 2014, 299: 1701–1707

    Article  Google Scholar 

  24. Li XL, Mu WJ, Xie X. J Hazard Mater, 2014, 264: 386–394

    Article  CAS  Google Scholar 

  25. Wu Y, Mimura H, Niibori Y, Ohnishi T, Koyama S, Wei YZ. Sci China Chem, 2012, 55: 1719–1725

    Article  CAS  Google Scholar 

  26. Chegrouche S, Mellah A, Barkat M. Desalination, 2009, 235: 306–318

    Article  CAS  Google Scholar 

  27. Wang X, Yu JT. J Radioanal Nucl Chem, 2015, 303: 807–813

    Article  CAS  Google Scholar 

  28. Ahmadi SJ, Akbari N, Shiri-Yekta Z. J Radioanal Nucl Chem, 2014, 299: 1701–1707

    Article  CAS  Google Scholar 

  29. Yang SB, Chen CL, Chen Y. ChemPlusChem, 2015, 80: 480–484

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wu, Y., Wu, H. et al. Adsorption behaviors of strontium using macroporous silica based hexagonal tungsten oxide. Sci. China Chem. 59, 601–608 (2016). https://doi.org/10.1007/s11426-015-5553-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5553-0

Keywords

Navigation