Skip to main content
Log in

The scaling behavior of the second virial coefficient of linear and ring polymer

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The scaling behavior of the second virial coefficient of ring polymers at the theta temperature of the corresponding linear polymer (θ L) is investigated by off-lattice Monte Carlo simulations. The effects of the solvents are modeled by pairwise interaction between polymer monomers in this approach. Using the umbrella sampling, we calculate the effective potential U(r) between two ring polymers as well as the second virial coefficient A 2 of ring polymers at θ L, which results from a combination of 3-body interactions and topological constraints. The trend in the strength of the effective potential with respect to chain length shows a non-monotonic behavior, differently from that caused only by topological constraints. Our simulation suggests that there are three regimes about the scaling behavior of A 2 of ring polymers at θ L: 3-body interactions dominating regime, the crossover regime, and the topological constraints dominating regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cates ME, Deutsch JM. J Phys, 1986, 47: 2121–2128

    Article  CAS  Google Scholar 

  2. Descloizeaux J. J Phys Letters, 1981, 42: L433–L436

    Article  Google Scholar 

  3. Dobay A, Dubochet J, Millett K, Sottas PE, Stasiak A. Proc Nat Acad Sci USA, 2003, 100: 5611–5615

    Article  CAS  Google Scholar 

  4. Lua R, Borovinskiy AL, Grosberg AY. Polymer, 2004, 45: 717–731

    Article  CAS  Google Scholar 

  5. Moore NT, Lua RC, Grosber AY. Proc Nat Acad Sci USA, 2004, 101: 13431–13435

    Article  CAS  Google Scholar 

  6. Obukhov SP, Rubinstein M, Duke T. Phys Rev Lett, 1994, 73: 1263–1266

    Article  CAS  Google Scholar 

  7. Suzuki J, Takano A, Matsushita Y. J Chem Phys, 2013, 139: 184904

    Article  Google Scholar 

  8. Suzuki J, Takano A, Matsushita Y. J Chem Phys, 2013, 138: 024902

    Article  Google Scholar 

  9. Takano A, Ohta Y, Masuoka K, Matsubara K, Nakano T, Hieno A, Itakura M, Takahashi K, Kinugasa S, Kawaguchi D, Takahashi Y, Matsushita Y. Macromolecules, 2012, 45: 369–373

    Article  CAS  Google Scholar 

  10. Halverson JD, Grest GS, Grosberg AY, Kremer K. Phys Rev Lett, 2012, 108: 038301

    Article  Google Scholar 

  11. Halverson JD, Lee WB, Grest GS, Grosberg AY, Kremer K. J Chem Phys, 2011, 134: 204904

    Article  Google Scholar 

  12. Halverson JD, Lee WB, Grest GS, Grosberg AY, Kremer K. J Chem Phys, 2011, 134: 204905

    Article  Google Scholar 

  13. Yang YB, Sun ZY, Fu CL, An LJ, Wang ZG. J Chem Phys, 2010, 133: 064901

    Article  Google Scholar 

  14. Liu LJ, Chen JZ, Chen WD, Li LY, An LJ. Sci China Chem, 2014, 57: 1048–1052

    Article  CAS  Google Scholar 

  15. Yang YB, Sun ZY. Chem J Chinese U, 2011, 32: 389–394

    CAS  Google Scholar 

  16. Hao L, Su JY, Guo HX. Chin J Poly Sci, 2013, 31: 1066–1073

    Article  CAS  Google Scholar 

  17. Roovers J. J Polym Sci Polym Phys Ed, 1985, 23: 1117–1126

    Article  CAS  Google Scholar 

  18. Roovers J, Toporowski PM. Macromolecules, 1983, 16: 843–849

    Article  CAS  Google Scholar 

  19. Iwata K. Macromolecules, 1985, 18: 115–116

    Article  CAS  Google Scholar 

  20. Iwata K. Macromolecules, 1989, 22: 3702–3706

    Article  CAS  Google Scholar 

  21. Tanaka F. J Chem Phys, 1987, 87: 4201–4206

    Article  CAS  Google Scholar 

  22. Deguchi T, Tsurusaki K. Random knots and links and applications to polymer physics. In: Suzuki S, Eds. Proceedings of Lectures at Knots 96. Tokyo: World Scientific, 1997. 95–122

    Chapter  Google Scholar 

  23. Takano A, Kushida Y, Ohta Y, Masuoka K, Matsushita Y. Polymer, 2009, 50: 1300–1303

    Article  CAS  Google Scholar 

  24. Rubinstein M, Colby RH. Polymer Physics. 1st Ed. New York: Oxford University Press, 2003

    Google Scholar 

  25. Freed KF. Renormalization Group Theroy of Macromolecules. New York: Wiley, 1987

    Google Scholar 

  26. Grosberg AY, Kuznetsov DV. Macromolecules, 1992, 25: 1970–1979

    Article  CAS  Google Scholar 

  27. Baumgrtner A. J Chem Phys, 1980, 72: 871–879

    Article  Google Scholar 

  28. Grassberger P, Hegger R. J Chem Phys, 1995, 102: 6881–6899

    Article  CAS  Google Scholar 

  29. Szleifer I, O Toole EM, Panagiotopoulos AZ. J Chem Phys, 1992, 97: 6802–6808

    Article  CAS  Google Scholar 

  30. Withers IM, Dobrynin AV, Berkowitz ML, Rubinstein M. J Chem Phys, 2003, 118: 4748–4753

    Article  Google Scholar 

  31. Sheng YJ, Liao CS. J Chem Phys, 2003, 118: 4721–4732

    Article  Google Scholar 

  32. Narros A, Moreno AJ, Likos CN. Soft Matter, 2010, 6: 2435–2441

    Article  CAS  Google Scholar 

  33. Narros A, Moreno AJ, Likos CN. Macromolecules, 2013, 46: 3654–3668

    Article  CAS  Google Scholar 

  34. de Gennes PG. Scaling Comcepts in Polymer Physics. Ithaca: Cornell University Press, 1979

    Google Scholar 

  35. Hu WB. J Chem Phys, 1998, 109: 3686–3690

    Article  CAS  Google Scholar 

  36. Guo JY, Liang HJ, Wang ZG. J Chem Phys, 2011, 134: 244904

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaoyan Sun or Zhen-Gang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Sun, Z., An, L. et al. The scaling behavior of the second virial coefficient of linear and ring polymer. Sci. China Chem. 59, 619–623 (2016). https://doi.org/10.1007/s11426-015-5531-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5531-6

Keywords

Navigation