Skip to main content
Log in

Conformation preference and related intramolecular noncovalent interaction of selected short chain chlorinated paraffins

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Short chain chlorinated paraffins (SCCPs) are not only research focus of environmental issues but also interesting model molecules for organic chemistry which exhibit diverse conformation preference and intramolecular noncovalent interactions (NCIs). A systematic study was conducted to reveal the conformation preference and the related intramolecular NCIs in two C10-isomers of SCCPs, 5,5,6,6-tetrachlorodecane and 4,4,6,6-tetrachlorodecane. The overall conformation profile was determined on the basis of relative energies calculated at the MP2/6-311++G(d,p) level with the geometries optimized by B3LYP/6-311++G(d,p) method. Then, quantum theory of atoms in molecules (QTAIM) has been adopted to identify the NCIs in the selected conformers of the model molecules at both B3LYP/6-311++G(d,p) and M06-2X/aug-cc-pvdz level. Different chlorine substitution modes result in varied conformation preference. No obvious gauche effect can be observed for the SCCPs with chlorination on adjacent carbon atoms. The most stable conformer of 5,5,6,6-tetrachlorodecane (tTt) has its three dihedral angles in the T configuration, and there is no intramolecular NCIs found in this molecule. On the contrary, the chlorination on interval carbon atoms favors the adoption of gauche configuration for the H–C–C–Cl axis. Not only intramolecular H···Cl contacts but also H···H interactions have been identified as driving forces to compensate the instability from steric crowding of the gauche configuration. The gggg and g′g′g′g′ conformers are the most popular ones, while the populations of tggg and tg′g′g′ conformer are second to those of the gggg and g′g′g′g′ conformers. Meanwhile, the M06-2X method with large basis sets is preferred for identification of subtle intramolecular NCIs in large molecules like SCCPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tomy GT, Stern GA, Lockhart WL, Muir DCG. Environ Sci Technol, 1999, 33: 2858–2863

    Article  CAS  Google Scholar 

  2. Tomy GT, Fisk AT, Westmore JB, Muir DCG. Environmental chemistry and toxicology of polychlorinated n-alkanes. In: Ware GW, Ed. Reviews of Environmental Contamination and Toxicology. Volume 158. New York: Springer-Verlag, 1998. 53–128

    Chapter  Google Scholar 

  3. Fiedler H. Short-chain chlorinated paraffins: production, use and international regulations. In: Boer J, Ed. The Handbook of Environmental Chemistry. Volume 10. Chlorinated Paraffins. Berlin/Heidelberg: Springer-Verlag, 2010. 1–40

    Chapter  Google Scholar 

  4. Sverko E, Tomy GT, Märvin CH, Muir DCG. Environ Sci Technol, 2012, 46: 4697–4698

    Article  CAS  Google Scholar 

  5. Wang T, Wang YW, Jiang GB. Environ Sci Technol, 2013, 47: 11924–11925

    Article  CAS  Google Scholar 

  6. Chen MY, Luo XJ, Zhang XL, He MJ, Chen SJ, Mai BX. Environ Sci Technol, 2011, 45: 9936–9943

    Article  CAS  Google Scholar 

  7. Geng NB, Zhang HJ, Zhang BQ, Wu P, Wang FD, Yu ZK, Chen JP. Environ Sci Technol, 2015, 49: 3076–3083

    Article  CAS  Google Scholar 

  8. Drouillard KG, Tomy GT, Muir DCG, Friesen KJ. Environ Toxicol Chem, 1998, 17: 1252–1260

    CAS  Google Scholar 

  9. Muir DCG, Stern G, Tomy G. Chlorinated paraffins. In: Hutzinger O, Paasivirta J, Eds. The Handbook of Environmental Chemistry. Volume 3. Anthropogenic Compounds Part K. New Types of Persistent Halogenated Compounds. Berlin/Heidelberg: Springer-Verlag, 2000. 203–236

    Google Scholar 

  10. Ma XD, Zhang HJ, Zhou HQ, Na GS, Wang Z, Chen C, Chen JW, Chen JP. Atmos Environ, 2014, 90: 10–15

    Article  CAS  Google Scholar 

  11. http://www.epa.gov/oppt/existingchemicals/pubs/actionplans/sccps.ht ml, 2015-04-27

  12. Glüge J, Bogdal C, Scheringer M, Buser AM, Hungerbühler K. J Phys Chem Ref Data, 2013, 42: 023103

    Article  Google Scholar 

  13. Li C, Xie HB, Chen JW, Yang XH, Zhang YF, Qiao XL. Environ Sci Technol, 2014, 48: 13808–13816

    Article  CAS  Google Scholar 

  14. Müller-Dethlefs K, Hobza P. Chem Rev, 2000, 100: 143–168

    Article  Google Scholar 

  15. Aoki M, Ohashi Y, Masuda S, Ojima S, Ueno N. J Chem Phys, 2005, 122: 194508

    Article  CAS  Google Scholar 

  16. Vetter AJ, Rieth RD, Brennessel WW, Jones WD. J Am Chem Soc, 2009, 131: 10742–10752

    Article  CAS  Google Scholar 

  17. Takahashi O, Kohno Y, Nishio M. Chem Rev, 2010, 110: 6049–6076

    Article  CAS  Google Scholar 

  18. Morino Y, Kuchitsu K. J Chem Phys, 1958, 28: 175–184

    Article  CAS  Google Scholar 

  19. Hirota E. J Chem Phys, 1962, 37: 283–291

    Article  CAS  Google Scholar 

  20. Monteiro NKV, Firme CL. J Phys Chem A, 2014, 118: 1730–1740

    Article  CAS  Google Scholar 

  21. Johansson MP, Swart M. Phys Chem Chem Phys, 2013, 15: 11543–11553

    Article  CAS  Google Scholar 

  22. Bader RFW. Chem Rev, 1991, 91: 893–928

    Article  CAS  Google Scholar 

  23. Koch U, Popelier PLA. J Phys Chem, 1995, 99: 9747–9754

    Article  CAS  Google Scholar 

  24. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang WT. J Am Chem Soc, 2010, 132: 6498–6506

    Article  CAS  Google Scholar 

  25. Lopes Jesus AJ, Rosado MT, Reva I, Fausto R, Eusébio ME, Redinha JS. J Phys Chem A, 2006, 110: 4169–4179

    Article  CAS  Google Scholar 

  26. Zhao Y, Truhlar DG. J Chem Theory Comput, 2006, 2: 1009–1018

    Article  CAS  Google Scholar 

  27. Jablonski M. J Phys Chem A, 2012, 116: 3753–3764

    Article  CAS  Google Scholar 

  28. Forni A. J Phys Chem A, 2009, 113: 3403–3412

    Article  CAS  Google Scholar 

  29. Wodrich MD, Corminboeuf C, Schleyer PvR. Org Lett, 2006, 8: 3631–3634

    Article  CAS  Google Scholar 

  30. Schreiner PR, Fokin AA, Pascal RA, de Meijere A. Org Lett, 2006, 8: 3635–3638

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09. Revision B.01. Wallingford, CT: Gaussian, Inc., 2009

    Google Scholar 

  32. Liu RR, Zhang CX, Kang LY, Sun XM, Zhao Y. RSC Adv, 2015, 5: 37988–37994

    Article  CAS  Google Scholar 

  33. Colebourne N, Stern ES. J Chem Soc, 1965: 3599–3605

    Google Scholar 

  34. Biegler-König F, Schönbohm J. J Comput Chem, 2002, 23: 1489–1494

    Article  Google Scholar 

  35. Jin R, Sun W. Sci China Chem, 2012, 55: 1428–1434

    Article  CAS  Google Scholar 

  36. Zhao Y, Truhlar DG. Acc Chem Res, 2008, 41: 157–167

    Article  CAS  Google Scholar 

  37. Yan XQ, Zhao XR, Wang H, Jin WJ. J Phys Chem B, 2014, 118: 1080–1087

    Article  CAS  Google Scholar 

  38. Laurent A, Jacquemin D. Sci China Chem, 2014, 57: 1363–1368

    Article  CAS  Google Scholar 

  39. Walker M, Harvey A, Sen A, Dessent C. J Phys Chem A, 2013, 117: 12590–12600

    Article  CAS  Google Scholar 

  40. Cerón-Carrasco J, Jacquemin D, Graton J, Thany S, Questel JY. J Phys Chem A, 2013, 117: 3944–3953

    Article  Google Scholar 

  41. Wladkowski BD, Broadwater SJ. J Chem Edu, 2002, 79: 230–233

    Article  CAS  Google Scholar 

  42. Thomas TD, Sæthre LJ, Børve KJ. Phys Chem Chem Phys, 2007, 9: 719–724

    Article  CAS  Google Scholar 

  43. Pan WX, Zhang DJ, Han Z, Zhan JH, Liu CB. Environ Sci Technol, 2013, 47: 8489–8498

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiqian Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Pan, W., Fu, J. et al. Conformation preference and related intramolecular noncovalent interaction of selected short chain chlorinated paraffins. Sci. China Chem. 59, 338–349 (2016). https://doi.org/10.1007/s11426-015-5502-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5502-y

Keywords

Navigation