Skip to main content
Log in

Adipo8, a high-affinity DNA aptamer, can differentiate among adipocytes and inhibit intracellular lipid accumulation in vitro

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Obesity is primarily caused by the excessive accumulation of white adipose tissues (WAT). We previously obtained an adipocyte-specific aptamer termed Adipo8 in vitro. In this present study, this adipocyte-specific aptamer Adipo8 was first chemically modified by introduction of phosphorothioate linkages (PS-linkages) and then conjugated to polyethylene glycol (PEG), we tested whether this modified aptamer could distinguish mature white adipocytes from 3T3-L1 preadipocytes or brown adipocytes. To verify the binding affinity of this aptamer to mature white adipocytes in vivo as well as in vitro, we tested whether modified Adipo8 could specifically bind to the WAT of Diet-Induced Obesity (DIO) C57BL/6 mice. Finally, we examined the effect of Adipo8 on the adipogenic differentiation of mature white adipocytes. Based on our results, PS-modified aptamer demonstrated its high binding affinity and specificity, and was able to distinguish white adipocytes from 3T3-L1 preadipocytes or brown adipocytes in vitro. PS-modified Adipo8 also demonstrated more biostability and prolonged binding time in biological fluids. Additionally, Adipo8 could inhibit adipogenic differentiation of adipose tissue, possibly by inhibiting the expression of PPAR-γ in adipose tissue. This modified aptamer holds great promise as a stable molecular recognition tool for targeted delivery to adipocytes and has potential in the treatment of obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Haslam DW, James WP. Obesity. Lancet, 2005, 366: 1197–1209

    Article  Google Scholar 

  2. Arem H, Irwin M. A review of web-based weight loss interventions in adults. Obes Revy, 2011, 12: e236–243

    Article  CAS  Google Scholar 

  3. Peirce V, Carobbio S, Vidal-Puig A. The different shades of fat. Nature, 2014, 510: 76–83

    Article  CAS  Google Scholar 

  4. Tan W, Donovan MJ, Jiang J. Aptamers from cell-based selection for bioanalytical applications. Chem Rev, 2013, 113: 2842–2862

    Article  CAS  Google Scholar 

  5. Hu R, Zhang X, Zhao Z, Zhu G, Chen T, Fu T, Tan W. DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery. Angew Chem Int Ed, 2014, 53: 5821–5826

    Article  CAS  Google Scholar 

  6. Pu Y, Zhu Z, Han D, Liu H, Liu J, Liao J, Zhang K, Tan W. Insulin-binding aptamer-conjugated graphene oxide for insulin detection. Analyst, 2011, 136: 4138–4140

    Article  CAS  Google Scholar 

  7. Sefah K, Shangguan D, Xiong X, O’Donoqhue MB, Tan W. Development of DNA aptamers using cell-selex. Nat Protoc, 2010, 5: 1169–1185

    Article  CAS  Google Scholar 

  8. Zhu G, Ye M, Donovan MJ, Song E, Zhao Z, Tan W. Nucleic acid aptamers: an emerging frontier in cancer therapy. Chem Commun, 2012, 48: 10472–10480

    Article  CAS  Google Scholar 

  9. Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nat Rev Drug Discov, 2010, 9: 537–550

    Article  CAS  Google Scholar 

  10. Zhang Y, Chen Y, Han D, Ocsoy I, Tan W. Aptamers selected by cell-selex for application in cancer studies. Bioanalysis, 2010, 2: 907–918

    Article  CAS  Google Scholar 

  11. Liu J, You M, Pu Y, Liu H, Ye M, Tan W. Recent developments in protein and cell-targeted aptamer selection and applications. Curr Med Chem, 2011, 18: 4117–4125

    Article  CAS  Google Scholar 

  12. Wang R, Zhu G, Mei L, Xie Y, Ma H, Ye M, Qing FL, Tan W. Automated modular synthesis of aptamer-drug conjugates for targeted drug delivery. J Am Chem Soc, 2014, 136: 2731–2734

    Article  CAS  Google Scholar 

  13. Zhu G, Zhang S, Song E, Zheng J, Hu R, Fang X, Tan W. Building fluorescent DNA nanodevices on target living cell surfaces. Angew Chem Int Ed, 2013, 52: 5490–5496

    Article  CAS  Google Scholar 

  14. Liu J, Liu H, Sefah K, Liu B, Pu Y, Van Simaeys D, Tan W. Selection of aptamers specific for adipose tissue. PloS One, 2012, 7: e37789

    Article  CAS  Google Scholar 

  15. Wang RE, Wu H, Niu Y, Cai J. Improving the stability of aptamers by chemical modification. Curr Med Chem, 2011, 18: 4126–4138

    Article  CAS  Google Scholar 

  16. Kaur H, Li JJ, Bay BH, Yung LY. Investigating the antiproliferative activity of high affinity DNA aptamer on cancer cells. PloS One, 2013, 8: e50964

    Article  CAS  Google Scholar 

  17. Kim Y, Phillips JA, Liu H, Kang H, Tan W. Using photons to manipulate enzyme inhibition by an azobenzene-modified nucleic acid probe. Proc Natl Acad Sci U S A, 2009, 106: 6489–6494

    Article  CAS  Google Scholar 

  18. Koizumi M. True antisense oligonucleotides with modified nucleotides restricted in the n-conformation. Curr Top Med Chem, 2007, 7: 661–665

    Article  CAS  Google Scholar 

  19. Lin Y, Nieuwlandt D, Magallanez A, Feistner B, Jayasena SD. High-affinity and specific recognition of human thyroid stimulating hormone (hTSH) by in vitro-selected 2′-amino-modified RNA. Nucleic Acids Res, 1996, 24: 3407–3414

    Article  CAS  Google Scholar 

  20. Yuan Q, Wu Y, Wang J, Liu D, Zhao Z, Liu T, Zhang X, Tan W. Targeted bioimaging and photodynamic therapy nanoplatform using an aptamer-guided g-quadruplex DNA carrier and near-infrared light. Angew Chem Int Ed, 2013, 52: 13965–13969

    Article  CAS  Google Scholar 

  21. Zhu G, Zheng J, Song E, Donovan M, Zhang K, Liu C, Tan W. Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc Natl Acad Sci USA, 2013, 110: 7998–8003

    Article  CAS  Google Scholar 

  22. Sciacca L, Vigneri R, Tumminia A, Frasca F, Squatrito S, Frittitta L, Vigneri P. Clinical and molecular mechanisms favoring cancer initiation and progression in diabetic patients. Nutr Metab Cardiovas, 2013, 23: 808–815

    Article  CAS  Google Scholar 

  23. Burmeister PE, Lewis SD, Silva RF, Preiss JR, Horwitz LR, Shannon Pendergrast P, McCauley TG, Kurz JC, Epstein DM, Wilson C, Keefe AD. Direct in vitro selection of a 2′-O-methyl aptamer to VEGF. Chem Biol, 2005, 12: 25–33

    Article  CAS  Google Scholar 

  24. Suganami T, Tanaka M, Ogawa Y. Adipose tissue inflammation and ectopic lipid accumulation. Endocr J, 2012, 59: 849–857

    Article  CAS  Google Scholar 

  25. Gil A, Olza J, Gil-Campos M, Gomez-Liorente C, Aguilera CM. Is adipose tissue metabolically different at different sites? Inte J Pediatr Obes, 2011, 6(Suppl 1): 13–20

    Article  Google Scholar 

  26. Lowell BB, Flier JS. Brown adipose tissue, beta 3-adrenergic receptors, and obesity. Annu Rev Med, 1997, 48: 307–316

    Article  CAS  Google Scholar 

  27. Zhao Z, Meng H, Wang N, Donovan MJ, Fu T, You M, Chen Z, Zhang X, Tan W. A controlled-release nanocarrier with extracellular pH value driven tumor targeting and translocation for drug delivery. Angew Chem Int Ed, 2013, 52: 7487–7491

    Article  CAS  Google Scholar 

  28. Vater A, Sell S, Kaczmarek P, Maasch C, Buchner K, Pruszynska-Oszmalek E, Kolodziejski P, Purschke W, Nowak KW, Strowski MZ, Klussmann S. A mixed mirror-image DNA/RNA aptamer inhibits glucagon and acutely improves glucose tolerance in models of type 1 and type 2 diabetes. J Biol Chem, 2013, 288: 21136–21147

    Article  CAS  Google Scholar 

  29. Lopez-Colon D, Jimenez E, You M, Gulbakan B, Tan W. Aptamers: turning the spotlight on cells. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2011, 3: 328–340

    Article  CAS  Google Scholar 

  30. Qiu L, Wu C, You M, Han D, Chen T, Zhu G, Jiang J, Yu R, Tan W. A targeted, self-delivered, and photocontrolled molecular beacon for mrna detection in living cells. J Am Chem Soc, 2013, 135: 12952–12955

    Article  CAS  Google Scholar 

  31. Sun H, Zhu X, Lu PY, Rosato RR, Tan W, Zu Y. Oligonucleotide aptamers: new tools for targeted cancer therapy. Mol Ther Nucleic Acids, 2014, 3: e182

    Article  CAS  Google Scholar 

  32. Zhao Z, Fan H, Zhou G, Bai H, Liang H, Wang R, Zhang X, Tan W. Activatable fluorescence/MRI bimodal platform for tumor cell imaging via MnO2 nanosheet-aptamer nanoprobe. J Am Chem Soc, 2014, 136: 11220–11223

    Article  CAS  Google Scholar 

  33. Fang X, Tan W. Aptamers generated from cell-selex for molecular medicine: a chemical biology approach. Accounts Chem Res, 2010, 43: 48–57

    Article  CAS  Google Scholar 

  34. Ali AT, Hochfeld WE, Myburgh R, Pepper MS. Adipocyte and adipogenesis. Eur J Cell Biol, 2013, 92: 229–236

    Article  CAS  Google Scholar 

  35. Zhou L, Zhang X, Wang Q, Lv Y, Mao G, Luo A, Wu Y, Wu Y, Zhang J, Tan W. Molecular engineering of a tbet-based two-photon fluorescent probe for ratiometric imaging of living cells and tissues. J Am Chem Soc, 2014, 136: 9838–9841

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huixia Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Liu, J., Tong, G. et al. Adipo8, a high-affinity DNA aptamer, can differentiate among adipocytes and inhibit intracellular lipid accumulation in vitro . Sci. China Chem. 58, 1612–1620 (2015). https://doi.org/10.1007/s11426-015-5367-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5367-0

Keywords

Navigation