Skip to main content
Log in

Negative effect on molecular planarity to achieve organic ternary memory: triphenylamine as the spacer

  • Articles
  • SPECIAL TOPIC · Molecular Functional Materials and Applications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Adjusting the spacers between the electron-acceptor and the elector-donor is important to design organic ternary memory material but rarely reported. In this paper, two small molecules, ZIPGA and ZIPCAD with benzene ring or triphenylamine as the spacers, were designed and synthesized to fabricate memory devices. The Al/ZIPGA/indium-tin oxide (ITO) device showed ternary characteristics, whereas Al/ZIPCAD/ITO had no obvious memory characteristics. Density functional theory calculation, X-ray diffraction (XRD) and atomic force microscopy (AFM) were employed to interpret the different memory properties. ZIPGA thin film has the closer intermolecular packing and flatter surface morphology than ZIPCAD film, which was favorable to the electron migration. This work demonstrates the importance of spacers and reveals that triphenylamine may be not a good spacer in design of new memory material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hagen R, Bieringer T. Adv Mater, 2001, 13: 1807–1810

    Article  Google Scholar 

  2. Liu CL, Chen WC. Polym Chem, 2011, 2: 2169–2174

    Article  CAS  Google Scholar 

  3. Scott JC, Bozano LD. Adv Mater, 2007, 19: 1452–1463

    Article  CAS  Google Scholar 

  4. Xiao J, Yin Z, Wu Y, Guo J, Cheng Y. Small, 2011, 7: 1242–1246

    Article  CAS  Google Scholar 

  5. Yang Y, Ouyang J, Ma L, Tseng RJH, Chu CW. AdvFunct Mater, 2006, 16: 1001–1014

    Article  CAS  Google Scholar 

  6. Kapetanakis E, Douvas AM, Velessiotis D, Makarona E, Argitis P. Adv Mater, 2008, 20: 4568–4574

    Article  CAS  Google Scholar 

  7. Li H, Xu QF, Li NJ, Ge JF, Lu JM, Gu HW. J Am Chem Soc, 2010, 132: 5542–5543

    Article  CAS  Google Scholar 

  8. Ye C, Peng Q, Li M, Luo J, Tang Z. J Am Chem Soc, 2012, 134: 20053–20059

    Article  CAS  Google Scholar 

  9. Jiang G, Song Y, Guo X, Zhang D, Zhu D. Adv Mater, 2008, 20: 2888–2898

    Article  CAS  Google Scholar 

  10. Rozenberg MJ, Inoue IH, Sanchez MJ. Phys Rev Lett, 2004, 92: 178302

    Article  CAS  Google Scholar 

  11. Guo X, Zhou N, Lou SJ, Hennek JW, Ponce Ortiz R. J Am Chem Soc, 2012, 134: 18427–18439

    Article  CAS  Google Scholar 

  12. Miao S, Li H, Xu Q, Li Y, Ji S. Adv Mater, 2012, 24: 6210–6215

    Article  CAS  Google Scholar 

  13. Miller NC, Sweetnam S, Hoke ET, Gysel R, Miller CE. Nano Lett, 2012, 12: 1566–1570

    Article  CAS  Google Scholar 

  14. Li Y, Li H, Chen H, Wan Y, Li N. Adv Funct Mater, 2015, 25: 4246–4254

    Article  CAS  Google Scholar 

  15. Bao Q, Zhang Q, Li Y, Li H, He J. OrgElectron, 2016, 28: 155–162

    CAS  Google Scholar 

  16. Shirota Y. J Mater Chem, 2005, 15: 75–93

    Article  CAS  Google Scholar 

  17. Cravino A, Roquet S, Ale O, Leriche P, Frere P, Roncali J. Chem Mater, 2006, 18: 2584–2590

    Article  CAS  Google Scholar 

  18. Su Z, Liu H, Li H, Lu J, Wang L. J Mater Chem C, 2014, 2: 5673

    Article  CAS  Google Scholar 

  19. Ishiyama T, Murata M, Miyaura N. J Org Chem, 1995, 60: 7508–7510

    Article  CAS  Google Scholar 

  20. Shi HP, Dai JX, Xu L, Shi LW, Fang L. Org Biomol Chem, 2012, 10: 3852–3858

    Article  CAS  Google Scholar 

  21. Yang X, Zhao Y, Zhang X, Li R, Dang J. J Mater Chem, 2012, 22: 7136–7148

    Article  CAS  Google Scholar 

  22. Bala M, Verma PK, Sharma U, Kumar N, Singh B. Green Chem, 2013, 15: 1687–1693

    Article  CAS  Google Scholar 

  23. Banerjee S, Payra S, Saha A, Sereda G. Tetrahedron Lett, 2014, 55: 5515–5520

    Article  CAS  Google Scholar 

  24. Lee WY, Kurosawa T, Lin ST, Higashihara T, Ueda M. Chem Mater, 2011, 23: 4487–4497

    Article  CAS  Google Scholar 

  25. Bromley ST, Mas-Torrent M, Hadley P, Rovira C. J Am Chem Soc, 2004, 126: 6544–6545

    Article  CAS  Google Scholar 

  26. Troisi A, Orlandi G. J Am Chem Soc, 2006, 110: 4065–4070

    CAS  Google Scholar 

  27. Coropceanu A, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Bredas JL. Chem Rev, 2007, 107: 926–952

    Article  CAS  Google Scholar 

  28. Tu CH, Kwong DL, Lai YS. Appl Phys Lett, 2006, 89: 252107

    Article  Google Scholar 

  29. Chen J, Xu L, Lin J, Geng Y, Wang L. Appl Phys Lett, 2006, 89: 083514

    Article  Google Scholar 

  30. Moskovits M. J Chem Phys, 1978, 69: 4159–4161

    Article  CAS  Google Scholar 

  31. Nayfeh A, Chui CO, Saraswat KC, Yonehara T. Appl Phys Lett, 2004, 85: 2815–2817

    Article  CAS  Google Scholar 

  32. Loser S, Bruns CJ, Miyauchi H, Ortiz RP, Facchetti A. J Am Chem Soc, 2011, 133: 8142–8145

    Article  CAS  Google Scholar 

  33. Mukerjee S, Srinivasan S, Soriaga MP, McBreen J. Phys Chem, 1995, 99: 4577–4589

    Article  CAS  Google Scholar 

  34. Thamaphat K, Limsuwan P, Ngotawornchai B. Nat Sci, 2008, 42: 357–361

    Google Scholar 

  35. You YT, Wang ML, Xuxie HN, Wu B, Sun ZY. Appl Phys Lett, 2010, 97: 233301

    Article  Google Scholar 

  36. Banerjee I, Harris P, Salimian A, Ray AK. IET Circ Device Syst, 2015, 9: 428–433

    Article  Google Scholar 

  37. Jeon S, Han JH, Lee J, Choi CJ, Choi S, Hwang H, Kim C. IEEE Electron Device Lett, 2005, 52: 2654–2659

    Article  CAS  Google Scholar 

  38. Li H, Li NJ, Sun R, Gu HW, Ge JF. J Phys Chem C, 2011, 115: 8288–8294

    Article  CAS  Google Scholar 

  39. Hu B, Zhu X, Chen X, Pan L, Peng S. J Am Chem Soc, 2012, 134: 17408–17411

    Article  CAS  Google Scholar 

  40. Zhuang XD, Chen Y, Liu G, Zhang B, Neoh KG. Adv Funct Mater, 2010, 20: 2916–2922

    Article  CAS  Google Scholar 

  41. Grabowski ZR, Rotstyna K, Rettig W. Chem Rev, 2003, 103: 3899–4031

    Article  Google Scholar 

  42. Dreuw JLW, Head-Gordon M. J Chem Phys, 2010, 119: 2943–2946

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmei Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, S., He, J., Li, H. et al. Negative effect on molecular planarity to achieve organic ternary memory: triphenylamine as the spacer. Sci. China Chem. 59, 692–698 (2016). https://doi.org/10.1007/s11426-015-0538-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-0538-1

Keywords

Navigation