Skip to main content
Log in

A new strategy to improve the sensitivity and selectivity of dopamine detection

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

We applied the combination of in situ electrochemical liquid-phase microextraction and square-wave voltammetric stripping analysis for the first time as a highly sensitive and selective approach for the detection of dopamine. A mixed gel of graphene sheets and an ionic liquid of 1-octyl-3-methylimidazolium hexaflurophosphate (OMimPF6) was used as a micro liquid-phase to pre-concentrate dopamine by controlled potential electrolysis from an aqueous solution (as a donor phase), followed by square-wave voltammetric stripping detection. Under optimized conditions, a linear calibration curve was obtained in the range of 0.05 to 1.0 μmol/L in the presence of excess ascorbic acid and uric acid. The detection limit has been found to be 8.0 nmol/L (S/N=3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Conway KA, Rochet JC, Bieganski RM, Lansbury PT Jr. Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alphasynuclein adduct. Science, 2001, 294: 1346–1349

    Article  CAS  Google Scholar 

  2. Pihel K, Walker QD, Wightman RM. Overoxidized polypyrrolecoated carbon fiber microelectrodes for dopamine measurements with fast-scan cyclic voltammetry. Anal Chem, 1996, 68: 2084–2089

    Article  CAS  Google Scholar 

  3. Blank CL, Kissinger PT, Adams RN. 5,6-Dihydroxyindole formation from oxidized 6-hydroxydopamine. Eur J Pharmacol, 1972, 19: 391–394

    Article  CAS  Google Scholar 

  4. Venton BJ, Wightman RM. Psychoanalytical electrochemistry: dopamine and behavior. Anal Chem, 2003, 75: 414A–421A

    Article  CAS  Google Scholar 

  5. Zhan DP, Mao SN, Zhao Q, Chen Z, Hu H, Jing P, Zhang MQ, Zhu ZW, Shao YH. Electrochemical investigation of dopamine at the water/1,2-dichloroethane interface. Anal Chem, 2004, 76: 4128–4136

    Article  CAS  Google Scholar 

  6. Adams RN. Probing brain chemistry with electroanalytical techniques. Anal Chem, 1976, 48: 1126A–1138A

    Article  CAS  Google Scholar 

  7. Amatore C, Kelly RS, Kristensen GW, Kuhr GW, Wightman MR. Effects of restricted diffusion at ultramicroelectrodes in brain tissue. The pool model: theory and experiment for chronoamperometry. J Electroanal Chem, 1986, 213: 31–42

    Article  CAS  Google Scholar 

  8. Downard AJ, Roddick AD, Bond AKM. Covalent modification of carbon electrodes for voltammetric differentiation of dopamine and ascorbic acid. Anal Chim Acta, 1995, 317: 303–310

    Article  CAS  Google Scholar 

  9. Shang F, Zhou L, Mahmoud KA, Hrapovic S, Liu Y, Moynihan HA. Glennon JD, Luong JH. Selective nanomolar detection of dopamine using a boron-doped diamond electrode modified with an electropolymerized sulfobutylether-beta-cyclodextrin-doped poly(N-acetyltyramine) and polypyrrole composite film. Anal Chem, 2009, 81: 4089–4098

    Article  CAS  Google Scholar 

  10. Silva RPD, Lima AWO, Serrano SHP. Simultaneous voltammetric detection of ascorbic acid, dopamine and uric acid using a pyrolytic graphite electrode modified into dopamine solution. Anal Chim Acta, 2008, 612: 89–98

    Article  Google Scholar 

  11. Ensafi AA, Taei M, Khayamian T, Arabzadeh A. Highly selective determination of ascorbic acid, dopamine, and uric acid by differential pulse voltammetry using poly(sulfonazo III) modified glassy carbon electrode. Senser Actuat B: Chem, 2010, 147: 213–221

    Article  CAS  Google Scholar 

  12. Raj CR, Okajima T, Ohsaka T. Gold nanoparticle arrays for the voltammetric sensing of dopamine. J Electroanal Chem, 2003, 543: 127–133

    Article  CAS  Google Scholar 

  13. Thiagarajan S, Chen SM. Preparation and characterization of PtAu hybrid film modified electrodes and their use in simultaneous determination of dopamine, ascorbic acid and uric acid. Talanta, 2007, 74: 212–222

    Article  CAS  Google Scholar 

  14. Zhao YF, Gao YQ, Zhan DP, Liu H, Zhao Q, Kou Y, Shao YH, Li MX, Zhuang QK, Zhu ZW. Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode. Talanta, 2005, 66: 51–57

    Article  CAS  Google Scholar 

  15. Zhao Q, Zhan DP, Ma HY, Zhang MQ, Zhao YF, Jing P, Zhu ZW, Wan XH, Shao YH, Zhuang QK. Direct proteins electrochemistry based on ionic liquid mediated carbon nanotube modified glassy carbon electrode. Front Biosci, 2005, 10: 326–334

    Article  CAS  Google Scholar 

  16. Salimi A, Banks CE, Compton RG. Abrasive immobilization of carbon nanotubes on a basal plane pyrolytic graphite electrode: application to the detection of epinephrine. Analyst, 2004, 129: 225–228

    Article  CAS  Google Scholar 

  17. Liu Y, Wang D, Huang J, Hou H, You T. Highly sensitive composite electrode based on electrospun carbon nanofibers and ionic liquid. Electrochem Commun, 2010, 12: 1108–1111

    Article  CAS  Google Scholar 

  18. Zhu H, Wu W, Zhang H, Fan L, Yang S. Highly selective and sensitive detection of dopamine in the presence of excessive ascorbic acid using electrodes modified with C60-functionalized multiwalled carbon nanotube films. Electroanalysis, 2009, 21: 2660–2666

    Article  CAS  Google Scholar 

  19. Goyal RN, Gupta VK, Bachheti N, Sharama RA. Electrochemical sensor for the determination of dopamine in presence of high concentration of ascorbic acid using a fullerene-C60 coated gold electrode. Electroanalysis, 2008, 20: 757–764

    Article  CAS  Google Scholar 

  20. Peng JY, Hou CT, Liu XX, Li HB, Hu XY. Electrochemical behavior of azithromycin at graphene and ionic liquid composite film modified electrode. Talanta, 2011, 86: 227–232

    Article  CAS  Google Scholar 

  21. Ping JF, Wang YX, Fan K, Wu J, Ying YB. Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application. Biosen Bioelectron, 2011, 28: 204–209

    Article  CAS  Google Scholar 

  22. Zhu CZ, Guo SJ, Zhai YM, Dong SJ. Layer-by-layer self-assembly for constructing a graphene/platinum nanoparticle three-dimensional hybrid nanostructure using ionic liquid as a linker. Langmuir, 2010, 26: 7614–7618

    Article  CAS  Google Scholar 

  23. Li F, Chai J, Yang H, Han D, Niu L. Synthesis of Pt/ionic liquid/ graphene nanocomposite and its simultaneous determination of ascorbic acid and dopamine. Talanta, 2010, 81: 1063–1068

    Article  CAS  Google Scholar 

  24. Xu C, Yuan L, Shen X, Zhai M. Efficient removal of caesium ions from aqueous solution using a calix crown ether in ionic liquids: mechanism and radiation effect. Dalton Trans, 2010, 39: 3897–3902

    Article  CAS  Google Scholar 

  25. Chen PY, Hussey CL. Electrochemistry of ionophore-coordinated Cs and Sr ions in the tri-1-butylmethylammonium bis((trifluoromethyl)- sulfonyl)imide ionic liquid. Electrochimica Acta, 2005, 50: 2533–2540

    Article  CAS  Google Scholar 

  26. Luo HM, Dai S, Bonnesen PV. Solvent extraction of Sr2+ and Cs+ based on room-temperature ionic liquids containing monoaza-substituted crown ethers. Anal Chem, 2004, 76: 2773–2779

    Article  CAS  Google Scholar 

  27. Reyna-Gonzalez JM, Torriero AAJ, Siriwardana AI, Burgar IM, Bond AM. Extraction of copper(II) ions from aqueous solutions with a methimazole-based ionic liquid. Anal Chem, 2010, 82: 7691–7698

    Article  CAS  Google Scholar 

  28. Egorov VM, Smirnova SV, Pletnev IV. Highly efficient extraction of phenols and aromatic amines into novel ionic liquids incorporating quaternary ammonium cation. Sep Purif Technol, 2008, 63: 710–715

    Article  CAS  Google Scholar 

  29. Liu JF, Jiang GB, Chi YG, Cai YQ, Zhou QX, Hu JT. Use of ionic liquids for liquid-phase microextraction of polycyclic aromatic hydrocarbons. Anal Chem, 2003, 75: 5870–5876

    Article  CAS  Google Scholar 

  30. Wang JH, Cheng DH, Chen XW, Du Z, Fang ZL. Direct extraction of double-stranded DNA into ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate and its quantification. Anal Chem, 2007, 79: 620–625

    Article  CAS  Google Scholar 

  31. Smirnova SV, Torocheshnikova II, Formanovsky AA, Pletnev IV. Solvent extraction of amino acids into a room temperature ionic liquid with dicyclohexano-18-crown-6. Anal Bioanal Chem, 2004, 378: 1369–1375

    Article  CAS  Google Scholar 

  32. Shimojo K, Kamiya N, Tani F, Naganawa H, Naruta Y, Goto M. Extractive solubilization, structural change, and functional conversion of cytochrome c in ionic liquid via crown ether complexation. Anal Chem, 2006, 78: 7735–7742

    Article  CAS  Google Scholar 

  33. Zhu YC, Cao L, Hao J, Qu Q, Xin SG, Zhang HB. Electrochemical liquid-phase microextraction and determination of iodide in kelp based on a carbon paste electrode by cyclic voltammetry. Microchim Acta, 2010, 170: 121–126

    Article  CAS  Google Scholar 

  34. Millan KM, Saraullo A, Mikkelsen SR. Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode. Anal Chem, 1994, 66: 2943–2948

    Article  CAS  Google Scholar 

  35. Salinas F, Peña AM, Durán-Merás I. Determination of salicylic acid and its metabolites in urine by derivative synchronous spectrofluorimetry. Analyst, 1990, 115: 1007–1011

    Article  CAS  Google Scholar 

  36. Li N, Wang Z, Zhao K, Shi Z, Gu Z, Xu S. Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon, 2010, 48: 255–259

    Article  CAS  Google Scholar 

  37. Subrahmanyam KS, Panchakarla LS, Govindaraj A, Rao CNR. Simple method of preparing graphene flakes by an arc-discharge method. J Phys Chem C, 2009, 113: 4257–4259

    Article  CAS  Google Scholar 

  38. Li YL, Liu ML, Xiang CH, Xie QJ, Yao SZ. Electrochemical quartz crystal microbalance study on growth and property of the polymer deposit at gold electrodes during oxidation of dopamine in aqueous solutions. Thin Solid Films, 2006, 497: 270–278

    Article  CAS  Google Scholar 

  39. Hernandez P, Sanchez I, Paton F, Hernandez L. Cyclic voltammetry determination of epinephrine with a carbon fiber ultramicroelectrode. Talanta, 1998, 46: 985–919

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Xie or Yuanhua Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Gu, J., Zhao, W. et al. A new strategy to improve the sensitivity and selectivity of dopamine detection. Sci. China Chem. 58, 892–898 (2015). https://doi.org/10.1007/s11426-014-5300-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5300-y

Keywords

Navigation