Skip to main content
Log in

Small molecular non-fullerene electron acceptors for P3HT-based bulk-heterojunction solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Three small molecules with the same arms and different cores of perylene diimide (PDI) or indaceno[2,1-b:6,5-b′]dithiophene (IDT) were designed and synthesized as the acceptor materials for P3HT-based bulk-heterojunction (BHJ) solar cells. The impacts of the different cores on the optical absorption, electrochemical properties, electron mobility, film morphology, photoluminescene characteristics, and solar cell performance were thoroughly studied. The three compounds possess a broad absorption covering the wavelength range of 400–700 nm and relatively low lowest unoccupied molecular orbital (LUMO) energy levels of −3.86, −3.81 and −3.99 eV. The highest power conversion efficiency of 0.82% was achieved for the BHJ solar cells based on SM3 as the acceptor material, the compound with a PDI core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen JW, Cao Y. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc Chem Res, 2009, 42: 1709–1718

    Article  CAS  Google Scholar 

  2. Cheng YJ, Yang SH, Hsu CS. Synthesis of conjugated polymers for organic solar cell applications. Chem Rev, 2009, 109: 5868–5923

    Article  CAS  Google Scholar 

  3. Li G, Zhu R, Yang Y. Polymer solar cells. Nat Photonics 2012, 6: 153–161

    Article  CAS  Google Scholar 

  4. Li YF. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc Chem Res, 2012, 45: 723–733

    Article  CAS  Google Scholar 

  5. Bundgaard E, Krebs FC. Low band gap polymers for organic photovoltaics. Sol Energy Mater Sol Cells, 2007, 91: 954–985

    Article  CAS  Google Scholar 

  6. Jørgensen M, Norrman K, Krebs FC. Stability/degradation of polymer solar cells. Sol Energy Mater Sol Cells, 2008, 92: 686–714

    Article  Google Scholar 

  7. Krebs FC. Fabrication and processing of polymer soalr cells: a review of printing and coating techniques. Sol Energy Mater Sol Cells, 2009, 93: 394–412

    Article  CAS  Google Scholar 

  8. Zhan XW, Zhu DB. Conjugated polymers for high-efficiency organic photovoltaics. Polym Chem, 2010, 1: 409–419

    Article  CAS  Google Scholar 

  9. Gupta V, Kyaw AKK, Wang DH, Chand S, Bazan GC, Heeger A. Barium: an efficient cathode layer for bulk-heterojunction solar cells. Sci Rep, 2013, 3: 1–6

    Google Scholar 

  10. Allemand PM, Koch A, Wudl F, Rubin Y, Diederich F, Alvarez MM, Anz SJ, Whetten RL. Two different fullerenes have the same cyclic voltammetry. J Am Chem Soc, 1991, 113: 1050–1051

    Article  CAS  Google Scholar 

  11. Brabec CJ, Cravino A, Meissner D, Sariciftci NS, Fromherz T, Rispens MT, Sanchez L, Hummelen JC. Origin of the open circuit voltage of plastic solar cells. Adv Funct Mater 2001, 11: 374–380

    Article  CAS  Google Scholar 

  12. Gong X, Yu TZ, Cao Y, Heeger AJ. Large open-circuit voltage polymer solar cells by poly(3-hexylthiophene) with multi-adducts fullerenes. Sci China Chem, 2012, 55: 743–748

    Article  CAS  Google Scholar 

  13. Guan ZL, Kim JB, Wang H, Jaye C, Fischer DA, Loo YL, Kahn A. Direct determination of the electronic structure of the poly(3-hexy-lthiophene):phenyl-[6,6]-C61 butyric acid methyl ester blend. Org Electron, 2010, 11: 1779–1785

    Article  CAS  Google Scholar 

  14. Yang TB, Qin DH, Lan LF, Huang WB, Gong X, Peng JB, Cao Y. Inverted polymer solar cells with a solution-processed zinc oxide thin film as an electron collection layer. Sci China Chem, 2012, 55: 755–759

    Article  CAS  Google Scholar 

  15. Hummelen JC, Knight BW, LePeq F, Wudl F, Yao J, Wilkins CL. Preparation and characterization of fulleroid and methanofullerene derivatives. J Org Chem, 1995, 60: 532–538

    Article  CAS  Google Scholar 

  16. Thompson BC, Fréchet MJ. Polymer-fullerene composite solar cells. Angew Chem Int Ed, 2008, 47: 58–77

    Article  CAS  Google Scholar 

  17. Singh TB, Marjanovic N, Matt GJ, Günes S, Sariciftci NS, Montaigne Ramil A, Andreev A, Sitter H, Schwödiauer R, Bauer S. High-mobillity n-channel organic field-effect transistors based on epitaxially grown C60 films. Org Electron, 2005, 6: 105–110

    Article  CAS  Google Scholar 

  18. Anctil A, Babbitt CW, Raffaelle RP, Landi BJ. Material and energy intensity of fullerene production. Environ Sci Technol, 2011, 45: 2353–2359

    Article  CAS  Google Scholar 

  19. Tan YZ, Xie SY, Huang RB, Zheng LS. The stabilization of fused-pentagon fullerene molecules. Nat Chem, 2009, 1: 450–460

    Article  CAS  Google Scholar 

  20. Sonar P, Lim JPF, Chan KL. Organic non-fullerene acceptors for organic photovoltaics. Energy Environ Sci, 2011, 4: 1558–1574

    Article  CAS  Google Scholar 

  21. Lin YZ, Li YF, Zhan XW. Small molecule semiconductors for high-efficiency organic photovoltaics. Chem Soc Rev, 2012, 41: 4245–4272

    Article  CAS  Google Scholar 

  22. Anthony JE. Small-molecule, nonfullerene acceptors for polymer bulk heterojunction organic photovoltaics. Chem Mater, 2011, 23: 583–590

    Article  CAS  Google Scholar 

  23. Zhou Y, Ding L, Shi K, Dai YZ, Ai N, Wang J, Pei J. A non-fullerene small molecule as efficient electron acceptor in organic bulk heterojunction solar cells. Adv Mater, 2012, 24: 957–961

    Article  CAS  Google Scholar 

  24. Zhou TL, Jia T, Kang B, Li FH, Fahlman M, Wang Y. Nitrile-substituted QA derivatives: new acceptor materials for solution-processable organic bulk heterojunction solar cells. Adv Energy Mater, 2011, 1: 431–439

    Article  CAS  Google Scholar 

  25. Ren GQ, Ahmed E, Jenekhe SA. Non-fullerene acceptor-based bulk heterojunction polymer soalr cells: engineering the nanomorphology via processing additives. Adv Energy Mater, 2011, 1: 946–953

    Article  CAS  Google Scholar 

  26. Sharma GD, Roy MS, Mikroyannidis JA, Justin Thomas KR. Synthesis and characterization of a new perylene bisimide (PBI) derivative and its application as electron acceptor for bulk heterojunction polymer solar cells. Org Electron, 2012, 13: 3118–3129

    Article  CAS  Google Scholar 

  27. Bloking JT, Han X, Higgs AT, Kastrop JP, Pandey L, Norton JE, Risko C, Chen CE, Bredas JL, McGehee MD, Sellinger A. Solution-processed organic solar cells with power conversion efficiencies of 2.5% using benzothiadiazole/imide-based acceptors. Chem Mater, 2011, 23: 5484–5490

    Article  CAS  Google Scholar 

  28. Brunetti FG, Gong X, Tong M, Heeger AJ, Wudl F. Strain and hückel aromaticity: driving forces for a promising new genaration of electron acceptors in organic electronics. Angew Chem Int Ed, 2010, 49: 532–536

    Article  CAS  Google Scholar 

  29. Würthner F. Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. Chem Commun, 2004, 1564–1579

    Google Scholar 

  30. Wasielewski MR. Energy, charge, and spin transport in molecules and self-assembled nanostructures inspired by photosynthesis. J Org Chem, 2006, 71: 5051–5066

    Article  CAS  Google Scholar 

  31. Zhan XW, Tan ZA, Domercq B, An ZS, Zhang X, Barlow S, Li YF, Zhu DB, Kippelen B, Marder SR. A high-mobility electron transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. J Am Chem Soc, 2007, 129: 7246–7247

    Article  CAS  Google Scholar 

  32. Zhan XW, Facchetti A, Barlow S, Marks TJ, Ratner MA, Wasielewski MR, Marder SR. Rylene and related diimides for organic electronics. Adv Mater, 2011, 23: 268–284

    Article  CAS  Google Scholar 

  33. Cheng P, Ye L, Zhao XG, Hou JH, Li YF, Zhan XW. Binary additives synergistically boost the efficiency of all-polymer solar cells up to 3.45%. Energy Environ Sci, 2014, 7: 1351–1356

    Article  CAS  Google Scholar 

  34. Lin YL, Wang FY, Wang JY, Hou JH, Li YF, Zhu DB, Zhan XW. A star-shaped perylene diimide electron acceptor for high-performance organic solar cells. Adv Mater, 2014, DOI: 10.1002/adma.201400525

    Google Scholar 

  35. Chen CP, Chan SH, Chao TC, Ting C, Ko BT. Low-bandgap poly (thiophene-phenylene-thiophene) derivatives with absorption spectra for use in high-preformance bulk-heterojunction polymer solar cells. J Am Chem Soc, 2008, 130: 12828–12833

    Article  CAS  Google Scholar 

  36. Liu X, Li QD, Li YC, Gong X, Su SJ, Cao Y. Indacenodithiophene core-based small molecules with tunable side chains for solu tion-processed bulk heterojunction solar cells. J Mater Chem A, 2014, 2: 4004–4013

    Article  CAS  Google Scholar 

  37. Wurthner F, Stepanenko V, Chen ZJ, Saha-Moller CR, Kocher N, Stalke D. Preparation and characterization of regioisomerically pure 1,7-disubstituted bisimide dyes. J Org Chem, 2004, 69: 7933–7939

    Article  Google Scholar 

  38. Zhou EJ, Cong JZ, Tajima K, Hashimoto K. Synthesis and photovoltaic properties of donor-acceptor copolymers based on 5,8-dithien-2-yl-2,3-diphenylquinoxaline. Chem Mater, 2010, 22: 4890–4895

    Article  CAS  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Lyengar SS, Tomasi J, Barone V, Mannucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma Y, Voth GL, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanoy BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, onzalez C, Pople JA. Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford, CT 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShiJian Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Cai, P., Chen, D. et al. Small molecular non-fullerene electron acceptors for P3HT-based bulk-heterojunction solar cells. Sci. China Chem. 57, 973–981 (2014). https://doi.org/10.1007/s11426-014-5129-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5129-4

Keywords

Navigation