Skip to main content
Log in

Effect of surface area and heteroatom of porous carbon materials on electrochemical capacitance in aqueous and organic electrolytes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A series of porous carbon materials with wide range of specific surface areas and different heteroatom contents had been prepared using polyaniline as carbon precursor and KOH as an activating agent. Effect of surface area and heteroatom of porous carbon materials on specific capacitance was investigated thoroughly in two typical aqueous KOH and organic 1-butyl-3-methylimidazolium tetrafluoroborate/acetonitirle electrolytes. The different trends of capacitance performance were observed in these two electrolytes. Electrochemical analyses suggested that the presence of faradaic interactions on heteroatom-enriched carbon materials in organic environment is less significant than that observed in aqueous electrolytes. Thus, in aqueous electrolyte, a balance between surface area and heteroatom content of activated porous carbon would be found to develop a supercapacitor with high energy density. In organic electrolyte, the capacitance performance of porous carbon is strongly dependent on the surface area. The results may be useful for the design of porous carbon-based supercapacitor with the desired capacitive performance in aqueous and organic electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Winter M, Brodd RJ. What are batteries, fuel cells, and supercapacitors. Chem Rev, 2004, 104: 4245–4270

    Article  CAS  Google Scholar 

  2. Zhai YP, Dou YQ, Zhao DY, Fulvio PF, Mayes RT, Dai S. Carbon materials for chemical capacitive energy storage. Adv Mater, 2011, 23: 4828–4850

    Article  CAS  Google Scholar 

  3. Pandolfo AG, Hollenkamp AF. Carbon properties and their role in supercapacitors. J Power Sources, 2006, 157: 11–27

    Article  CAS  Google Scholar 

  4. Liang CD, Li ZJ, Dai S. Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed, 2008, 47: 3696–3717

    Article  CAS  Google Scholar 

  5. Miller JR, Outlaw RA, Holloway BC. Graphene double-layer capacitor with ac line-filtering performance. Science, 2010, 24: 1637–1639

    Article  Google Scholar 

  6. Zhu YW, Murali S, Stoller MD, Ganesh KJ, Cai WW, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS. Carbon-based supercapacitors produced by activation of graphene. Science, 2011, 332: 1537–1541

    Article  CAS  Google Scholar 

  7. Wang RT, Wang PY, Yan XB, Lang JW, Peng C, Xue QJ. Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance. ACS Appl Mater Interfaces, 2012, 4: 5800–5806

    Article  CAS  Google Scholar 

  8. Jurcakova DH, Kodama M, Shiraishi S, Hatori H, Zhu ZH, Lu GQ. Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance. Adv Funct Mater, 2009, 19: 1800–1809

    Article  Google Scholar 

  9. Górka J, Jaroniec M. Hierarchically porous phenolic resin-based carbons obtained by block copolymer-colloidal silica templating and post-synthesis activation with carbon dioxide and water vapor. Carbon, 2011, 49: 154–160

    Article  Google Scholar 

  10. Chen H, Zhang X, Zhang HT, Sun XZ, Zhang DC, Ma YW. High-performance supercapacitors based on a graphene-activated carbon composite prepared by chemical activation. RSC Adv, 2012, 2: 7747–7753

    Article  CAS  Google Scholar 

  11. Wang Q, Yan J, Xiao Y, Wei T, Fan ZJ, Zhang ML, Jing XY. Interconnected porous and nitrogen-doped carbon network for supercapacitors with high rate capability and energy density. Electrochim Acta, 2013, 114: 165–172

    Article  CAS  Google Scholar 

  12. Lv Y, Zhang F, Dou Y, Zhai YQ, Wang JX, Liu HJ, Xia YY, Tu B, Zhao DY. A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application. J Mater Chem, 2012, 22: 93–99

    Article  CAS  Google Scholar 

  13. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science, 2006, 313: 1760–1763

    Article  CAS  Google Scholar 

  14. Chmiola J, Largeot C, Taberna PL, Simon P, Gogotsi Y. Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory. Angew Chem Inte Ed, 2008, 47: 3392–3395

    Article  CAS  Google Scholar 

  15. Feng G, Cummings PT. Supercapacitor capacitance exhibits oscillatory behavior as a function of nanopore size. J Phys Chem Lett, 2011, 2: 2859–2864

    Article  CAS  Google Scholar 

  16. Huang J, Sumpter BG, Meunier V. Theoretical model for nanoporous carbon supercapacitors. Angew Chem Int Ed, 2008, 47: 520–524

    Article  CAS  Google Scholar 

  17. Kondrat S, Perez CR, Presser V, Gogotsi Y, Kornyshev AA. Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors. Energy Environ Sci, 2012, 5: 6474–6479

    Article  CAS  Google Scholar 

  18. Wang RT, Yan XB. Superior asymmetric supercapacitor based on Ni-Co oxide nanosheets and carbon nanorods. Sci Rep, 2014, 4: 3721

    Google Scholar 

  19. Zhang L, Ying X, Zhang F, Long GK, Zhang TF, Leng K, Zhang YW, Huang Y, Ma YF, Zhang MT, Chen YS. Controlling the effective surface area and pore size distribution of sp2 carbon materials and their impact on the capacitance performance of these materials. J Am Chem Soc, 2013, 13: 5921–5929

    Article  Google Scholar 

  20. Zhang LL, Zhao X, Ji H, Stoller MD, Lai L, Murali S, Mcdonnell S, Cleveqer B, Wallace RM, Ruoff RS. Nitrogen doping of graphene and its effect on quantum capacitance, and a new insight on the enhanced capacitance of N-doped carbon. Energy Environ Sci, 2012, 5: 9618–9625

    Article  CAS  Google Scholar 

  21. Zhong M, Kim EK, McGann JP, Chun SE, Whitacre JF, Jaroniec M, Matyjaszewski K, Kowalewski T. Electrochemically active nitrogen-enriched nanocarbons with well-defined morphology synthesized by pyrolysis of self-assembled block copolymer. J Am Chem Soc, 2012, 134: 14846–14857

    Article  CAS  Google Scholar 

  22. Sevilla M, Valle-Vigón P, Fuertes AB. N-doped polypyrrole-based porous carbons for CO2 capture. Adv Funct Mater, 2011, 21: 2781–2787

    Article  CAS  Google Scholar 

  23. Qie L, Chen WM, Wang ZH, Zhao QG, Li X, Yuan LX, Lu XL, Zhang WX, Huang YH. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater, 2012, 24: 2047–2050

    Article  Google Scholar 

  24. Zhao L, Fan LZ, Zhou MQ, Guan H, Qiao S, Antonietti M, Titirici MM. Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv Mater, 2010, 22: 5202–5206

    Article  CAS  Google Scholar 

  25. Hulicova D, Kodama M, Hatori H. Electrochemical performance of nitrogen-enriched carbons in aqueous and non-aqueous supercapacitors. Chem Mater, 2006, 18: 2318–2326

    Article  CAS  Google Scholar 

  26. Ania CO, Khomenko V, Raymundo-Piñero E, Parra JB, Béguin F. The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template. Adv Funct Mater, 2007, 17: 1828–1836

    Article  CAS  Google Scholar 

  27. Andreas HA, Conway BE. Examination of the double-layer capacitance of an high specific-area C-cloth electrode as titrated from acidic to alkaline pHs. Electrochim Acta, 2006, 51: 6510–6520

    Article  CAS  Google Scholar 

  28. Seredych M, Hulicova-Jurcakova D, Lu GQ, Bandosz TJ. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon, 2008, 46: 1475–1488

    Article  CAS  Google Scholar 

  29. Jurewicz K, Pietrzak R, Nowicki P, Wachowska H. Capacitance behaviour of brown coal based active carbon modified through chemical reaction with urea. Electrochim Acta, 2008, 53: 5469–5475

    Article  CAS  Google Scholar 

  30. Frackowiak E, Lota G, Machnikowski J, Vix-Guterl C, Beguin F. Optimisation of supercapacitors using carbons with controlled nanotexture and nitrogen content. Electrochim Acta, 2006, 51: 2209–2214

    Article  CAS  Google Scholar 

  31. Qiu YC, Zhang XF, Yang SH. High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets. Phys Chem Chem Phys, 2011, 13: 12554–12558

    Article  CAS  Google Scholar 

  32. Qian WJ, Sun FX, Xu YH, Qiu LH, Liu CH, Wang SD, Yan F. Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ Sci, 2014, 7: 379–386

    Article  CAS  Google Scholar 

  33. An BG, Xu SF, Li LX, Tao J, Huang F, Geng X. Carbon nanotubes coated with a nitrogen-doped carbon layer and its enhanced electrochemical capacitance. J Mater Chem A, 2013, 1: 7222–7228

    Article  CAS  Google Scholar 

  34. Hulicova-Jurcakova D, Kadama M, Shiraishi S, Hatori H, Zhu ZH, Lu GQ. Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance. Adv Funct Mater, 2009, 19: 1800–1809

    Article  CAS  Google Scholar 

  35. Hulicova-Jurcakova D, Serdych M, Lu GQ, Bandosz TJ. Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater, 2009, 19: 438–447

    Article  CAS  Google Scholar 

  36. Li X, Wang HL, Robinson JT, Sanchez H, Diankov G, Dai HJ. Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc, 2009, 131: 15939–15944

    Article  CAS  Google Scholar 

  37. Kim YJ, Abe Y, Yanagiura T, Park KC, Shimizu M, Iwazaki T, Nakagawa S, Endo M, Dresselhaus MS. Easy preparation of nitrogen-enriched carbon materials from peptides of silk fibroins and their use to produce a high volumetric energy density in supercapacitors. Carbon, 2007, 45: 2116–2125

    Article  CAS  Google Scholar 

  38. Hulicova D, Yamashita J, Soneda Y, Hatori H, Kodama M. Supercapacitors prepared from melamine-based carbon. Chem Mater, 2005, 17: 1241–1247

    Article  CAS  Google Scholar 

  39. Yan J, Wei T, Qiao WM, Fan ZJ, Zhang LJ, Li TY, Zhao QK. A high-performance carbon derived from polyaniline for supercapacitors. Electrochem Commun, 2010, 12: 1279–1282

    Article  CAS  Google Scholar 

  40. Li LM, Liu EH, Yang YJ, Shen HJ, Huang ZZ, Xiang XX. Nitrogen-containing carbons prepared from polyaniline as anode materials for lithium secondary batteries. Mater Lett, 2010, 64: 2115–2117

    Article  CAS  Google Scholar 

  41. Chen YZ, Zhu HY, Liu YN. Preparation of activated rectangular polyaniline-based carbon tubes and their application in hydrogen adsorption. Int J Hydrogen Energ, 2011, 36: 11738–11745

    Article  CAS  Google Scholar 

  42. Yin JB, Xia X, Xiang LQ, Zhao XP. Conductivity and polarization of carbonaceous nanotubes derived from polyaniline nanotubes and their electrorheology when dispersed in silicone oil. Carbon, 2010, 48: 2958–2967

    Article  CAS  Google Scholar 

  43. Wang J, Chen MM, Wang CY, Wang JZ, Zheng JM. Preparation of mesoporous carbons from amphiphilic carbonaceous material for high-performance electric double-layer capacitors. J Power Sources, 2011, 196: 550–558

    Article  CAS  Google Scholar 

  44. Cuhadaraglu D, Uygun OA. Production and characterization of activated carbon from a bituminous coal by chemical activation. Afr J Biotechnol, 2008, 7: 3703–3710

    Google Scholar 

  45. Chen CM, Zhang Q, Yang MG, Huang CH, Yang YG, Wang MZ. Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors. Carbon, 2012, 50: 3572–3584

    Article  CAS  Google Scholar 

  46. Chen CM, Zhang Q, Zhao XC, Zhang BS, Kong QQ, Yang MG, Yang QH, Wang MZ, Yang YG, Schlogl R, Su DS. Hierarchically aminated graphene honeycombs for electrochemical capacitive energy storage. J Mater Chem, 2012, 22: 14076–14084

    Article  CAS  Google Scholar 

  47. Oda H, Yamashita A, Minoura S, Okamoto M, Morimoto T. Modification of the oxygen-containing functional group on activated carbon fiber in electrodes of an electric double-layer capacitor. J Power Sources, 2006, 158: 1510–1516

    Article  CAS  Google Scholar 

  48. Ruiz V, Blanco C, Granda M, Santamaría R. Enhanced life-cycle supercapacitors by thermal treatment of mesophase-derived activated carbons. Electrochim Acta, 2008, 54: 305–310

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XingBin Yan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Lang, J. & Yan, X. Effect of surface area and heteroatom of porous carbon materials on electrochemical capacitance in aqueous and organic electrolytes. Sci. China Chem. 57, 1570–1578 (2014). https://doi.org/10.1007/s11426-014-5123-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5123-x

Keywords

Navigation