Skip to main content
Log in

Synthetic biodegradable functional polymers for tissue engineering: a brief review

  • Reviews
  • Special Issue Recent Research Progress of Biomedical Polymers
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Scaffolds play a crucial role in tissue engineering. Biodegradable polymers with great processing flexibility are the predominant scaffolding materials. Synthetic biodegradable polymers with well-defined structure and without immunological concerns associated with naturally derived polymers are widely used in tissue engineering. The synthetic biodegradable polymers that are widely used in tissue engineering, including polyesters, polyanhydrides, polyphosphazenes, polyurethane, and poly (glycerol sebacate) are summarized in this article. New developments in conducting polymers, photoresponsive polymers, amino-acid-based polymers, enzymatically degradable polymers, and peptide-activated polymers are also discussed. In addition to chemical functionalization, the scaffold designs that mimic the nano and micro features of the extracellular matrix (ECM) are presented as well, and composite and nanocomposite scaffolds are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Couch N, Wtlson R, Hager E, Murray J. Transplantatton of cadaver kidneys experience with 21 cases. Surgery, 1966, 59: 183–188

    CAS  Google Scholar 

  2. Langer R, Vacanti JP. Tissue engineering. Science, 1993, 260: 920–926

    Article  CAS  Google Scholar 

  3. Guo BL, Glavas L, Albertsson AC. Biodegradable and electrically conducting polymers for biomedical applications. Prog Polym Sci, 2013, 38: 1263–1286

    Article  CAS  Google Scholar 

  4. Ma PX. Biomimetic materials for tissue engineering. Adv Drug Delivery Rev, 2008, 60: 184–198

    Article  CAS  Google Scholar 

  5. Liu XH, Holzwarth JM, Ma PX. Functionalized synthetic biodegradable polymer scaffolds for tissue engineering. Macromol Biosci, 2012, 12: 911–919

    Article  CAS  Google Scholar 

  6. Chen GP, Ushida T, Tateishi T. Scaffold design for tissue engineering. Macromol Biosci, 2002, 2: 67–77

    Article  CAS  Google Scholar 

  7. Yang SF, Leong KF, Du ZH, Chua CK. The design of scaffolds for use in tissue engineering. Part 1. Traditional factors. Tissue Eng, 2001, 7: 679–689

    Article  CAS  Google Scholar 

  8. Holzwarth JM, Ma PX. 3D nanofibrous scaffolds for tissue engineering. J Mater Chem, 2011, 21: 10243–10251

    Article  CAS  Google Scholar 

  9. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci, 2007, 32: 762–798

    Article  CAS  Google Scholar 

  10. Tian HY, Tang ZH, Zhuang XL, Chen XS, Jing XB. Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci, 2012, 37: 237–280

    Article  CAS  Google Scholar 

  11. Van Vlierberghe S, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules, 2011, 12: 1387–1408

    Article  CAS  Google Scholar 

  12. Tate MLK, Falls TD, McBride SH, Atit R, Knothe UR. Mechanical modulation of osteochondroprogenitor cell fate. Int J Biochem Cell Biol, 2008, 40: 2720–2738

    Article  CAS  Google Scholar 

  13. Magnusson JP, Saeed AO, Fernandez-Trillo F, Alexander C. Synthetic polymers for biopharmaceutical delivery. Polym Chem, 2011, 2: 48–59

    Article  CAS  Google Scholar 

  14. Cameron DJA, Shaver MP. Aliphatic polyester polymer stars: synthesis, properties and applications in biomedicine and nanotechnology. Chem Soc Rev, 2011, 40: 1761–1776

    Article  CAS  Google Scholar 

  15. Hakkarainen M, Albertsson AC. Degradation products of aliphatic and aliphatic-aromatic polyesters. Adv Polym Sci, 2008, 211: 85–116

    Article  CAS  Google Scholar 

  16. Jerome C, Lecomte P. Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Adv Drug Delivery Rev, 2008, 60: 1056–1076

    Article  CAS  Google Scholar 

  17. Seyednejad H, Ghassemi AH, van Nostrum CF, Vermonden T, Hennink WE. Functional aliphatic polyesters for biomedical and pharmaceutical applications. J Controlled Release, 2011, 152: 168–176

    Article  CAS  Google Scholar 

  18. Gupta B, Revagade N, Hilborn J. Poly(lactic acid) fiber: an overview. Prog Polym Sci, 2007, 32: 455–482

    Article  CAS  Google Scholar 

  19. Liu XH, Ma PX. The nanofibrous architecture of poly(l-lactic acid)-based functional copolymers. Biomaterials, 2010, 31: 259–269

    Article  CAS  Google Scholar 

  20. Labet M, Thielemans W. Synthesis of polycaprolactone: a review. Chem Soc Rev, 2009, 38: 3484–3504

    Article  CAS  Google Scholar 

  21. Woodruff MA, Hutmacher DW. The return of a forgotten polymer-Polycaprolactone in the 21st century. Prog Polym Sci, 2010, 351: 1217–1256

    Article  CAS  Google Scholar 

  22. Chang LL, Liu JJ, Zhang JH, Deng LD, Dong AJ. pH-sensitive nanoparticles prepared from amphiphilic and biodegradable methoxy poly(ethylene glycol)-block-(polycaprolactone-graft-poly (methacrylic acid)) for oral drug delivery. Polym Chem, 2013, 4: 1430–1438

    Article  CAS  Google Scholar 

  23. McNeil SE, Griffiths HR, Perrie Y. Polycaprolactone fibres as a potential delivery system for collagen to support bone regeneration. Curr Drug Deliv, 2011, 8: 448–455

    Article  CAS  Google Scholar 

  24. Torres MP, Vogel BM, Narasimhan B, Mallapragada SK. Synthesis and characterization of novel polyanhydrides with tailored erosion mechanisms. J Biomed Mater Res A, 2006, 76A: 102–110

    Article  CAS  Google Scholar 

  25. Jain JP, Chitkara D, Kumar N. Polyanhydrides as localized drug delivery carrier: an update. Expert Opin Drug Deliv, 2008, 5: 889–907

    Article  CAS  Google Scholar 

  26. Jain JP, Modi S, Domb AJ, Kumar N. Role of polyanhydrides as localized drug carriers. J Controlled Release, 2005, 103: 541–563

    Article  CAS  Google Scholar 

  27. Allcock HR. Generation of structural diversity in polyphosphazenes. Appl Organomet Chem, 2013, 27: 620–629

    Article  CAS  Google Scholar 

  28. Ding JH, Wang L, Yu HJ, Yang QA, Deng LB. Progress in synthesis of polyphosphazenes. Des Monomers Polym, 2008, 11: 215–222

    Article  CAS  Google Scholar 

  29. Teasdale I, Bruggemann O. Polyphosphazenes: multifunctional, biodegradable vehicles for drug and gene delivery. Polymers, 2013, 5: 161–187

    Article  CAS  Google Scholar 

  30. Krogman NR, Weikel AL, Kristhart KA, Nukavarapu SP, Deng M, Nair LS, Laurencin CT, Allcock HR. The influence of side group modification in polyphosphazenes on hydrolysis and cell adhesion of blends with PLGA. Biomaterials, 2009, 30: 3035–3041

    Article  CAS  Google Scholar 

  31. Nichol JL, Morozowich NL, Allcock HR. Biodegradable alanine and phenylalanine alkyl ester polyphosphazenes as potential ligament and tendon tissue scaffolds. Polym Chem, 2013, 4: 600–606

    Article  CAS  Google Scholar 

  32. Krol P. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Prog Mater Sci, 2007, 52: 915–1015

    Article  CAS  Google Scholar 

  33. Santerre JP, Woodhouse K, Laroche G, Labow RS. Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials. Biomaterials, 2005, 26: 7457–7470

    Article  CAS  Google Scholar 

  34. Guelcher SA. Biodegradable polyurethanes: synthesis and applications in regenerative medicine. Tissue Eng Part B Rev, 2008, 14: 3–17

    Article  CAS  Google Scholar 

  35. Zhang JY, Doll BA, Beckman EJ, Hollinger JO. Three-dimensional biocompatible ascorbic acid-containing scaffold for bone tissue engineering. Tissue Eng, 2003, 9: 1143–1157

    Article  CAS  Google Scholar 

  36. Rai R, Tallawi M, Grigore A, Boccaccini AR. Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): a review. Prog Polym Sci, 2012, 37: 1051–1078

    Article  CAS  Google Scholar 

  37. Wang YD, Ameer GA, Sheppard BJ, Langer R. A tough biodegradable elastomer. Nat Biotechnol, 2002, 20: 602–606

    Article  CAS  Google Scholar 

  38. Pomerantseva I, Krebs N, Hart A, Neville CM, Huang AY, Sundback CA. Degradation behavior of poly(glycerol sebacate). J Biomed Mater Res A, 2009, 91A: 1038–1047

    Article  CAS  Google Scholar 

  39. Patel A, Gaharwar AK, Iviglia G, Zhang HB, Mukundan S, Mihaila SM, Demarchi D, Khademhosseini A. Highly elastomeric poly (glycerol sebacate)-co-poly(ethylene glycol) amphiphilic block copolymers. Biomaterials, 2013, 34: 3970–3983

    Article  CAS  Google Scholar 

  40. Masoumi N, Johnson KL, Howell MC, Engelmayr GC. Valvular interstitial cell seeded poly(glycerol sebacate) scaffolds: toward a biomimetic in vitro model for heart valve tissue engineering. Acta Biomater, 2013, 9: 5974–5988

    Article  CAS  Google Scholar 

  41. Ravichandran R, Venugopal JR, Sundarrajan S, Mukherjee S, Ramakrishna S. Poly(glycerol sebacate)/gelatin core/shell fibrous structure for regeneration of myocardial infarction. Tissue Eng Part A, 2011, 17: 1363–1373

    Article  CAS  Google Scholar 

  42. Sun ZJ, Chen C, Sun MZ, Ai CH, Lu XL, Zheng YF, Yang BF, Dong DL. The application of poly(glycerol-sebacate) as biodegradable drug carrier. Biomaterials, 2009, 30: 5209–5214

    Article  CAS  Google Scholar 

  43. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA. Hydrogels in regenerative medicine. Adv Mater, 2009, 21: 3307–3329

    Article  CAS  Google Scholar 

  44. Nouailhas H, Li F, El Ghzaoui A, Li SM, Coudane J. Influence of racemization on stereocomplex-induced gelation of water-soluble polylactide-poly(ethylene glycol) block copolymers. Polym Int, 2010, 59: 1077–1083

    CAS  Google Scholar 

  45. Peyton SR, Raub CB, Keschrumrus VP, Putnam AJ. The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells. Biomaterials, 2006, 27: 4881–4893

    Article  CAS  Google Scholar 

  46. Mann BK, JL. W. Cell adhesion peptides alter smooth muscle cell adhesion, proliferation, migration, and matrix protein synthesis on modified surfaces and in polymer scaffolds. J Biomed Mater Res A, 2002, 60: 86–93

    Article  CAS  Google Scholar 

  47. Abebe DG, Fujiwara T. Controlled thermoresponsive hydrogels by stereocomplexed PLA-PEG-PLA prepared via hybrid micelles of pre-mixed copolymers with different PEG lengths. Biomacromolecules, 2012, 13: 1828–1836

    Article  CAS  Google Scholar 

  48. Buwalda SJ, Calucci L, Forte C, Dijkstra PJ, Feijen J. Stereocomplexed 8-armed poly(ethylene glycol)-poly(lactide) star block copolymer hydrogels: gelation mechanism, mechanical properties and degradation behavior. Polymer, 2012, 53: 2809–2817

    Article  CAS  Google Scholar 

  49. Yang JY, Jacobsen MT, Pan HZ, Kopecek J. Synthesis and characterization of enzymatically degradable PEG-based peptide-containing hydrogels. Macromol Biosci, 2010, 10: 445–454

    Article  CAS  Google Scholar 

  50. Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, Hubbell JA. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci USA, 2003, 100: 5413–5418

    Article  CAS  Google Scholar 

  51. Stenger-Smith JD. Intrinsically electrically conducting polymers. Synthesis, characterization, and their applications. Prog Polym Sci, 1998, 23: 57–79

    Article  CAS  Google Scholar 

  52. Schmidt CE, Shastri VR, Vacanti JP, Langer R. Stimulation of neurite outgrowth using an electrically conducting polymer. Proc Natl Acad Sci USA, 1997, 94: 8948–8953

    Article  CAS  Google Scholar 

  53. Wong JY, Langer R, Ingber DE. Electrical conducting polymers can nonnvasively control the shape and growth of mammalian-cells. Proc Natl Acad Sci USA, 1994, 91: 3201–3204

    Article  CAS  Google Scholar 

  54. Guimard NK, Gomez N, Schmidt CE. Conducting polymers in biomedical engineering. Prog Polym Sci, 2007, 32: 876–921

    Article  CAS  Google Scholar 

  55. Shi GX, Rouabhia M, Wang ZX, Dao LH, Zhang Z. A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide. Biomaterials, 2004, 25: 2477–2488

    Article  CAS  Google Scholar 

  56. Richardson RT, Wise AK, Thompson BC, Flynn BO, Atkinson PJ, Fretwell NJ, Fallon JB, Wallace GG, Shepherd RK, Clark GM, O’Leary SJ. Polypyrrole-coated electrodes for the delivery of charge and neurotrophins to cochlear neurons. Biomaterials, 2009, 30: 2614–2624

    Article  CAS  Google Scholar 

  57. Xu H, Holzwarth JM, Yan Y, Xu P, Zheng H, Yin Y, Li S, Ma PX. Conductive PPY/PDLLA conduit for peripheral nerve regeneration. Biomaterials, 2014, 35: 225–235

    Article  CAS  Google Scholar 

  58. Jeong SI, Jun ID, Choi MJ, Nho YC, Lee YM, Shin H. Development of electroactive and elastic nanofibers that contain polyaniline and poly(l-lactide-co-epsilon-caprolactone) for the control of cell adhesion. Macromol Biosci, 2008, 8: 627–637

    Article  CAS  Google Scholar 

  59. Wei ZX, Faul CFJ. Aniline oligomers-Architecture, function and new opportunities for nanostructured materials. Macromol Rapid Commun, 2008, 29: 280–292

    Article  CAS  Google Scholar 

  60. Zhang XY, Qi HX, Wang SQ, Feng L, Ji Y, Tao L, Li SX, Wei Y. Cellular responses of aniline oligomers: a preliminary study. Toxicol Res, 2012, 1: 201–205

    Article  CAS  Google Scholar 

  61. Huang LH, Zhuang XL, Hu J, Lang L, Zhang PB, Wang Y, Chen XS, Wei Y, Jing XB. Synthesis of biodegradable and electroactive multiblock polylactide and aniline pentamer copolymer for tissue engineering applications. Biomacromolecules, 2008, 9: 850–858

    Article  CAS  Google Scholar 

  62. Stridsberg KM, Ryner M, Albertsson AC. Controlled ring-opening polymerization: polymers with designed macromolecular architecture. Adv Polym Sci, 2002, 157: 41–65

    Article  CAS  Google Scholar 

  63. Guo BL, Finne-Wistrand A, Albertsson AC. Molecular architecture of electroactive and biodegradable copolymers composed of polylactide and carboxyl-capped aniline trimer. Biomacromolecules, 2010, 11: 855–863

    Article  CAS  Google Scholar 

  64. Guo BL, Finne-Wistrand A, Albertsson AC. Universal two-step approach to degradable and electroactive block copolymers and networks from combined ring-opening polymerization and postfunctionalization via oxidative coupling reactions. Macromolecules, 2011, 44: 5227–5236

    Article  CAS  Google Scholar 

  65. Guo BL, Finne-Wistrand A, Albertsson AC. Simple route to sizetunable degradable and electroactive nanoparticles from the self-assembly of conducting coil-rod-coil triblock copolymers. Chem Mater, 2011, 23: 4045–4055

    Article  CAS  Google Scholar 

  66. Guo BL, Finne-Wistrand A, Albertsson AC. Enhanced electrical conductivity by macromolecular architecture: hyperbranched electroactive and degradable block copolymers based on poly (epsiloncaprolactone) and aniline pentamer. Macromolecules, 2010, 43: 4472–4480

    Article  CAS  Google Scholar 

  67. Guo BL, Finne-Wistrand A, Albertsson AC. Degradable and electroactive hydrogels with tunable electrical conductivity and swelling behavior. Chem Mater, 2011, 23: 1254–1262

    Article  CAS  Google Scholar 

  68. Guo BL, Finne-Wistrand A, Albertsson AC. Versatile functionalization of polyester hydrogels with electroactive aniline oligomers. J Polym Sci, Part A: Polym Chem, 2011, 49: 2097–2105

    Article  CAS  Google Scholar 

  69. Guo BL, Finne-Wistrand A, Albertsson AC. Facile synthesis of degradable and electrically conductive polysaccharide hydrogels. Biomacromolecules, 2011, 12: 2601–2609

    Article  CAS  Google Scholar 

  70. Guo BL, Finne-Wistrand A, Albertsson AC. Electroactive hydrophilic polylactide surface by covalent modification with tetraaniline. Macromolecules, 2012, 45: 652–659

    Article  CAS  Google Scholar 

  71. Guo BL, Sun Y, Finne-Wistrand A, Mustafa K, Albertsson AC. Electroactive tubular porous scaffolds with degradability and non-cytotoxicity for neural tissue regeneration. Acta Biomater, 2012, 8: 144–153

    Article  CAS  Google Scholar 

  72. Ercole F, Davis TP, Evans RA. Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym Chem, 2010, 1: 37–54

    Article  CAS  Google Scholar 

  73. Dai S, Ravi P, Tam KC. Thermo- and photo-responsive polymeric systems. Soft Matter, 2009, 5: 2513–2533

    Article  CAS  Google Scholar 

  74. Jin CF, Yan RS, Huang JG. Cellulose substance with reversible photo-responsive wettability by surface modification. J Mater Chem, 2011, 21: 17519–17525

    Article  CAS  Google Scholar 

  75. Blasco E, del Barrio J, Sanchez-Somolinos C, Pinol M, Oriol L. Light induced molecular release from vesicles based on amphiphilic linear-dendritic block copolymers. Polym Chem, 2013, 4: 2246–2254

    Article  CAS  Google Scholar 

  76. Peng K, Tomatsu I, Kros A. Light controlled protein release from a supramolecular hydrogel. Chem Commun, 2010, 46: 4094–4096

    Article  CAS  Google Scholar 

  77. Altunbas A, Pochan DJ. Peptide-based and polypeptide-based hydrogels for drug delivery and tissue engineering. Top Curr Chem, 2012, 310: 135–167

    Article  CAS  Google Scholar 

  78. Deming TJ. Synthetic polypeptides for biomedical applications. Prog Polym Sci, 2007, 32: 858–875

    Article  CAS  Google Scholar 

  79. Li LQ, Charati MB, Kiick KL. Elastomeric polypeptide-based biomaterials. Polym Chem, 2010, 1: 1160–1170

    Article  CAS  Google Scholar 

  80. Kopecěk J, Rejmanová P. Enzymatically degradable bonds in synthetic polymers. In: Bruck SD. Ed. Controlled Drug Delivery, Vol. I. Boca Raton, FL: CRC Press, 1983, 81

    Google Scholar 

  81. Brandl FP, Seitz AK, Tessmar JKV, Blunk T, Gopferich AM. Enzymatically degradable poly(ethylene glycol) based hydrogels for adipose tissue engineering. Biomaterials, 2010, 31: 3957–3966

    Article  CAS  Google Scholar 

  82. West JL, Hubbell JA. Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules, 1999, 32: 241–244

    Article  CAS  Google Scholar 

  83. Jun I, Park KM, Lee DY, Park KD, Shin H. Control of adhesion, focal adhesion assembly, and differentiation of myoblasts by enzymatically crosslinked cell-interactive hydrogels. Macromol Res, 2011, 19: 911–920

    Article  CAS  Google Scholar 

  84. Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL. Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Delivery Rev, 2007, 59: 1413–1433

    Article  CAS  Google Scholar 

  85. Wei GB, Ma PX. Partially nanofibrous architecture of 3D tissue engineering scaffolds. Biomaterials, 2009, 30: 6426–6434

    Article  CAS  Google Scholar 

  86. Wei GB, Ma PX. Nanostructured biomaterials for regeneration. Adv Funct Mater, 2008, 18: 3568–3582

    Article  CAS  Google Scholar 

  87. Vasita R, Katti DS. Nanofibers and their applications in tissue engineering. Int J Nanomed, 2006, 1: 15–30

    Article  CAS  Google Scholar 

  88. Wei GB, Ma PX. Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres. J Biomed Mater Res A, 2006, 78A: 306–315

    Article  CAS  Google Scholar 

  89. Ma PX, Zhang RY. Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res, 1999, 46: 60–72

    Article  CAS  Google Scholar 

  90. Chen VJ, Ma PX. Nano-fibrous poly(l-lactic acid) scaffolds with interconnected spherical macropores. Biomaterials, 2004, 25: 2065–2073

    Article  CAS  Google Scholar 

  91. Liu XH, Ma PX. Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials, 2009, 30: 4094–4103

    Article  CAS  Google Scholar 

  92. Liu XH, Jin XB, Ma PX. Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair. Nat Mater, 2011, 10: 398–406

    Article  CAS  Google Scholar 

  93. Kang SW, Yang HS, Seo SW, Han DK, Kim BS. Apatite-coated poly(lactic-co-glycolic acid) microspheres as an injectable scaffold for bone tissue engineering. J Biomed Mater Res A, 2008, 85A: 747–756

    Article  CAS  Google Scholar 

  94. Lee TJ, Kang SW, Bhang SH, Kang JM, Kim BS. Apatite-coated porous poly(lactic-co-glycolic acid) microspheres as an injectable bone substitute. J Biomater Sci, Polym Ed, 2010, 21: 635–645

    Article  CAS  Google Scholar 

  95. Holzwarth JM, Ma PX. Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials, 2011, 32: 9622–9629

    Article  CAS  Google Scholar 

  96. Zhang R, Ma PX. Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone tissue engineering. I. Preparation and morphology. J Biomed Mater Res, 1999, 44: 446–455

    Article  CAS  Google Scholar 

  97. Boccaccini AR, Blaker JJ. Bioactive composite materials for tissue engineering scaffolds. Expert Rev Med Devices, 2005, 2: 303–317

    Article  CAS  Google Scholar 

  98. Dorozhkin SV. Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater, 2010, 6: 715–734

    Article  CAS  Google Scholar 

  99. Chou YF, Dunn JCY, Wu BM. In vitro response of MC3T3-E1 preosteoblasts within three-dimensional apatite-coated PLGA scaffolds. J Biomed Mater Res B, 2005, 75B: 81–90

    Article  CAS  Google Scholar 

  100. Zhang RY, Ma PX. Porous poly(l-lactic acid)/apatite composites created by biomimetic process. J Biomed Mater Res, 1999, 45: 285–293

    Article  CAS  Google Scholar 

  101. Liao S, Watari F, Zhu Y, Uo M, Akasaka T, Wang W, Xu G, Gui F. The degradation of the three layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane in vitro. Dent Mater, 2007, 23: 1120–1128

    Article  CAS  Google Scholar 

  102. Ngiam M, Liao SS, Patil AJ, Cheng ZY, Chan CK, Ramakrishna S. The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering. Bone, 2009, 45: 4–16

    Article  CAS  Google Scholar 

  103. Wei GB, Ma PX. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials, 2004, 25: 4749–4757

    Article  CAS  Google Scholar 

  104. Lei B, Shin KH, Noh DY, Jo IH, Koh YH, Choi WY, Kim HE. Nanofibrous gelatin-silica hybrid scaffolds mimicking the native extracellular matrix (ECM) using thermally induced phase separation. J Mater Chem, 2012, 22: 14133–14140

    Article  CAS  Google Scholar 

  105. Liu X, Smith LA, Hu J, Ma PX. Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials, 2009, 30: 2252–2258

    Article  CAS  Google Scholar 

  106. He CL, Xiao GY, Jin XB, Sun CH, Ma PX. Electrodeposition on nanofibrous polymer scaffolds: rapid mineralization, tunable calcium phosphate composition and topography. Adv Funct Mater, 2010, 20: 3568–3576

    Article  CAS  Google Scholar 

  107. He C, Jin X, Ma PX. Calcium phosphate deposition rate, structure and osteoconductivity on electrospun poly(l-lactic acid) matrix using electrodeposition or simulated body fluid incubation. Acta Biomater, 2014, 10: 419–427

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter X. Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, B., Ma, P.X. Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci. China Chem. 57, 490–500 (2014). https://doi.org/10.1007/s11426-014-5086-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5086-y

Keywords

Navigation