Skip to main content
Log in

Facile synthesis of size-tunable ZIF-8 nanocrystals using reverse micelles as nanoreactors

  • Articles
  • Special Issue Chemical Methodology
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

This paper describes a robust method for the synthesis of high-quality ZIF-8 nanocrystals using reverse micelles as discrete nanoscale reactors. The precise size control of ZIF-8 nanocrystals is conveniently achieved by tuning the concentration of precursors, reaction temperatures, the amount of water, and the structure of surfactants. The as-synthesized ZIF-8 nanocrystals are of narrow distribution and tunable size. A size-dependent catalytic activity for Knoevenagel condensation reaction is further demonstrated by using ZIF-8 nanocrystals with different sizes as the catalysts. This facile method opens up a new opportunity in the synthesis of various ZIFs nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park KS, Ni Z, Cote AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci, 2006, 103: 10186–10191

    Article  CAS  Google Scholar 

  2. Huang XC, Lin YY, Zhang JP, Chen XM. Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew Chem Int Ed, 2006, 45: 1557–1559

    Article  CAS  Google Scholar 

  3. Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi OM. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science, 2008, 319: 939–943

    Article  CAS  Google Scholar 

  4. Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’Keeffe M, Yaghi OM. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res, 2010, 43: 58–67

    Article  CAS  Google Scholar 

  5. Demessence A, Boissiere C, Grosso D, Horcajada P, Serre C, Ferey G, Soler-Illia GJAA, Sanchez C. Adsorption properties in high optical quality nanoZIF-8 thin films with tunable thickness. J Mater Chem, 2010, 20: 7676–7681

    Article  CAS  Google Scholar 

  6. Wang B, Cote AP, Furukawa H, O’Keeffe M, Yaghi OM. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature, 2008, 453: 207–211

    Article  CAS  Google Scholar 

  7. Li LM, Wang HF, Yan XP. Metal-organic framework ZIF-8 nanocrystals as pseudostationary phase for capillary electrokinetic chromatography. Electrophoresis, 2012, 33: 2896–2902

    Article  CAS  Google Scholar 

  8. Chang N, Gu ZY, Yan XP. Zeolitic imidazolate framework-8 nanocrystal coated capillary for molecular sieving of branched alkanes from linear alkanes along with high-resolution chromatographic separation of linear alkanes. J Am Chem Soc, 2010, 132: 13645–13647

    Article  CAS  Google Scholar 

  9. Jiang HL, Liu B, Akita T, Haruta M, Sakurai H, Xu Q. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. J Am Chem Soc, 2009, 131: 11302–11303

    Article  CAS  Google Scholar 

  10. Zhu MQ, Srinivas D, Bhogeswararao S, Ratnasamy P, Carreon MA. Catalytic activity of ZIF-8 in the synthesis of styrene carbonate from CO2 and styrene oxide. Catal Commun, 2013, 32: 36–40

    Article  CAS  Google Scholar 

  11. Lu G, Li S, Guo Z, Farha OK, Hauser BG, Qi X, Wang Y, Wang X, Han S, Liu X, DuChene JS, Zhang H, Zhang Q, Chen X, Ma J, Loo SC, Wei WD, Yang Y, Hupp JT, Huo FW. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat Chem, 2012, 4: 310–316

    Article  CAS  Google Scholar 

  12. Karagiaridi O, Lalonde MB, Bury W, Sarjeant AA, Farha OK, Hupp JT. Opening ZIF-8: A catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers. J Am Chem Soc, 2012, 134: 18790–18796

    Article  CAS  Google Scholar 

  13. Dang TT, Zhu Y, Ngiam JSY, Ghosh SC, Chen A, Seayad AM. Palladium nanoparticles supported on ZIF-8 as an efficient heterogeneous catalyst for aminocarbonylation. ACS Catal, 2013, 3: 1406–1410

    Article  CAS  Google Scholar 

  14. Kuo CH, Tang Y, Chou LY, Sneed BT, Brodsky CN, Zhao Z, Tsung CK. Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control. J Am Chem Soc, 2012, 134: 14345–14348

    Article  CAS  Google Scholar 

  15. Li Z, Zeng HC. Surface and bulk integrations of single-layered Au or Ag nanoparticles onto designated crystal planes {110} or {100} of ZIF-8. Chem Mater, 2013, 25: 1761–1768

    Article  CAS  Google Scholar 

  16. Torad NL, Hu M, Kamachi Y, Takai K, Imura M, Naito M, Yamauchi Y. Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals. Chem Commun, 2013, 49: 2521–2523

    Article  CAS  Google Scholar 

  17. Chaikittisilp W, Hu M, Wang H, Huang HS, Fujita T, Wu KC, Chen LC, Yamauchi Y, Ariga K. Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem Commun, 2012, 48: 7259–7261

    Article  CAS  Google Scholar 

  18. Wang Q, Xia W, Guo W, An L, Xia D, Zou R. Functional zeoliticimidazolate-framework-templated porous carbon materials for CO capture and enhanced capacitors. Chem Asian J, 2013, 8(8): 1879–1885

    Article  CAS  Google Scholar 

  19. Lu G, Hupp JT. Metal-organic frameworks as sensors: A ZIF-8 based Fabry-Perot device as a selective sensor for chemical vapors and gases. J Am Chem Soc, 2010, 132: 7832–7833

    Article  CAS  Google Scholar 

  20. Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT. Metal-organic framework materials as chemical sensors. Chem Rev, 2012, 112: 1105–1125

    Article  CAS  Google Scholar 

  21. Liu S, Xiang ZH, Hu Z, Zheng XP, Cao DP. Zeolitic imidazolate framework-8 as a luminescent material for the sensing of metal ions and small molecules. J Mater Chem, 2011, 21: 6649–6653

    Article  CAS  Google Scholar 

  22. Lin W, Rieter WJ, Taylor KM. Modular synthesis of functional nanoscale coordination polymers. Angew Chem Int Ed, 2009, 48: 650–658

    Article  CAS  Google Scholar 

  23. Miralda CM, Macias EE, Zhu M, Ratnasamy P, Carreon MA. Zeolitic imidazole framework-8 catalysts in the conversion of CO2 to chloropropene carbonate. ACS Catal, 2012, 2: 180–183

    Article  CAS  Google Scholar 

  24. Cao AM, Hu JS, Wan LJ. Morphology control and shape evolution in 3D hierarchical superstructures. Sci China Chem, 2012, 55: 2249–2256

    Article  CAS  Google Scholar 

  25. Fan LL, Xue M, Kang ZX, Li H, Qiu SL. Electrospinning technology applied in zeolitic imidazolate framework membrane synthesis. J Mater Chem, 2012, 22: 25272–25276

    Article  CAS  Google Scholar 

  26. Cho HY, Kim J, Kim SN, Ahn WS. High yield 1-L scale synthesis of ZIF-8 via a sonochemical route. Micropor Mesopor Mat, 2013, 169: 180–184

    Article  CAS  Google Scholar 

  27. Ge D, Lee HK. Sonication-assisted emulsification microextraction combined with vortex-assisted porous membrane-protected microsolid-phase extraction using mixed zeolitic imidazolate frameworks 8 as sorbent. J Chromatogr A, 2012, 1263: 1–6

    Article  CAS  Google Scholar 

  28. Seoane B, Zamaro JM, Tellez C, Coronas J. Sonocrystallization of zeolitic imidazolate frameworks (ZIF-7, ZIF-8, ZIF-11 and ZIF-20). Crystengcomm, 2012, 14: 3103–3107

    Article  CAS  Google Scholar 

  29. Zhu MQ, Venna SR, Jasinski JB, Carreon MA. Room-temperature synthesis of ZIF-8: The coexistence of ZnO nanoneedles. Chem Mater, 2011, 23: 3590–3592

    Article  CAS  Google Scholar 

  30. Zhan WW, Kuang Q, Zhou JZ, Kong XJ, Xie ZX, Zheng LS. Semiconductor@metal-organic framework core-shell heterostructures: A case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response. J Am Chem Soc, 2013, 135: 1926–1933

    Article  CAS  Google Scholar 

  31. Kwon HT, Jeong HK. Highly propylene-selective supported zeoliteimidazolate framework (ZIF-8) membranes synthesized by rapid microwave-assisted seeding and secondary growth. Chem Commun, 2013, 49: 3854–3856

    Article  CAS  Google Scholar 

  32. Cravillon J, Nayuk R, Springer S, Feldhoff A, Huber K, Wiebcke M. Controlling zeolitic imidazolate framework nano- and microcrystal formation: Insight into crystal growth by time-resolved in situ static light scattering. Chem Mater, 2011, 23: 2130–2141

    Article  CAS  Google Scholar 

  33. Cravillon J, Munzer S, Lohmeier SJ, Feldhoff A, Huber K, Wiebcke M. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem Mater, 2009, 21: 1410–1412

    Article  CAS  Google Scholar 

  34. Cravillon J, Schroder CA, Nayuk R, Gummel J, Huber K, Wiebcke M. Fast nucleation and growth of ZIF-8 nanocrystals monitored by time-resolved in situ small-angle and wide-angle X-ray scattering. Angew Chem Int Ed, 2011, 50: 8067–8071

    Article  CAS  Google Scholar 

  35. Nune SK, Thallapally PK, Dohnalkova A, Wang C, Liu J, Exarhos GJ. Synthesis and properties of nano zeolitic imidazolate frameworks. Chem Commun, 2010, 46: 4878–4880

    Article  CAS  Google Scholar 

  36. Pan YC, Liu YY, Zeng GF, Zhao L, Lai ZP. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem Commun, 2011, 47: 2071–2073

    Article  CAS  Google Scholar 

  37. Pileni MP. Reverse micelles as microreactors. J Phys Chem, 1993, 97: 6961–6973

    Article  CAS  Google Scholar 

  38. Riter RE, Willard DM, Levinger NE. Water immobilization at surfactant interfaces in reverse micelles. J Phys Chem B, 1998, 102: 2705–2714

    Article  CAS  Google Scholar 

  39. Woo K, Lee HJ, Ahn JP, Park YS. Sol-gel mediated synthesis of Fe2O3 nanorods. Adv Mater, 2003, 15: 1761–1764

    Article  CAS  Google Scholar 

  40. Gao CB, Lu ZD, Yin YD. Gram-scale synthesis of silica nanotubes with controlled aspect ratios by templating of nickel-hydrazine complex nanorods. Langmuir, 2011, 27: 12201–12208

    Article  CAS  Google Scholar 

  41. Rieter WJ, Taylor KM, An H, Lin WB. Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. J Am Chem Soc, 2006, 128: 9024–9025

    Article  CAS  Google Scholar 

  42. Taylor KM, Jin A, Lin WB. Surfactant-assisted synthesis of nanoscale gadolinium metal-organic frameworks for potential multimodal imaging. Angew Chem Int Ed, 2008, 47: 7722–7725

    Article  CAS  Google Scholar 

  43. Taylor KM, Rieter WJ, Lin WB. Manganese-based nanoscale metalorganic frameworks for magnetic resonance imaging. J Am Chem Soc, 2008, 130: 14358–14359

    Article  CAS  Google Scholar 

  44. Chen C, Fang XL, Wu BH, Huang LJ, Zheng NF. A multi-yolk-shell structured nanocatalyst containing sub-10 nm Pd nanoparticles in porous CeO2. ChemCatChem, 2012, 4: 1578–1586

    Article  CAS  Google Scholar 

  45. Liu ZH, Fang XL, Chen C, Zheng NF. Pd nanoparticles encapsulated in hollow mesoporous aluminosilica nanospheres as an efficient catalyst for multistep reactions and size-selective hydrogenation. Acta Chim Sinica, 2013, 71: 334–338

    Article  CAS  Google Scholar 

  46. Freeman F. Properties and reactions of ylidenemalononitriles. Chem Rev, 1980, 80: 329–350

    Article  CAS  Google Scholar 

  47. Tietze LF. Domino reactions in organic synthesis. Chem Rev, 1996, 96: 115–136

    Article  CAS  Google Scholar 

  48. Chizallet C, Lazare S, Bazer-Bachi D, Bonnier F, Lecocq V, Soyer E, Quoineaud AA, Bats N. Catalysis of transesterification by a nonfunctionalized metal-organic framework: Acido-basicity at the external surface of ZIF-8 probed by FTIR and ab initio calculations. J Am Chem Soc, 2010, 132: 12365–12377

    Article  CAS  Google Scholar 

  49. Tran UPN, Le KKA, Phan NTS. Expanding applications of metalorganic frameworks: Zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the Knoevenagel reaction. ACS Catal, 2011, 1: 120–127

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to NanFeng Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Fang, X., Wu, B. et al. Facile synthesis of size-tunable ZIF-8 nanocrystals using reverse micelles as nanoreactors. Sci. China Chem. 57, 141–146 (2014). https://doi.org/10.1007/s11426-013-5008-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-5008-4

Keywords

Navigation