Skip to main content
Log in

Preparation of a cross-linked gelatin/bacteriorhodopsin film and its photochromic properties

  • Articles
  • Special Issue
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Bacteriorhodopsin (BR) is a photochromic membrane protein isolated from a strain of halobacteria. Embedment of BR into a polymeric matrix enables the application of the photoactive protein as an optical material. In this work, a chemically cross-linked BR/gelatin film was prepared. The cross-linked film was found to be highly stable even under extreme alkaline or detergent circumstance while BR maintained its bioactivity. The treatments of base and detergents also led to dramatic prolongation of the lifetime of M photoproduct, which might be beneficial for potential applications such as information storage. The BR/gelatin film was demonstrated to tentatively record a simple pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lanyi JK, Luecke H. Bacteriorhodopsin. Curr Opin Struct Biol, 2001, 11(4): 415–419

    Article  CAS  Google Scholar 

  2. Wu AG, Jia ZH, Schaper A, Noll F, Hampp NA. Simultaneous removal of thiolated membrane proteins resulting in nanostructured lipid layers. Langmuir, 2006, 22(12): 5213–5216

    Article  CAS  Google Scholar 

  3. Mukhopadhyay AK, Bose S, Hendler RW. Membrane-mediated control of the bacteriorhodopsin photocycle. Biochemistry, 1994, 33(36): 10889–10895

    Article  CAS  Google Scholar 

  4. Pabst R, Nawroth T, Dose K. Time-dependent monomerization of bacteriorhodopsin in Triton X-100 solutions analyzed by high-perform ance liquid-chromatography. J Chromatogr A, 1984, 285(2): 333–341

    Article  CAS  Google Scholar 

  5. Hampp N. Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chem Rev, 2000, 100(5): 1755–1776

    Article  CAS  Google Scholar 

  6. Ming M, Lu M, Balashov SP, Ebrey TG, Li QG, Ding JD. pH Dependence of light-driven proton pumping by an archaerhodopsin from Tibet: Comparison with bacteriorhodopsin. Biophys J, 2006, 90(9): 3322–3332

    Article  CAS  Google Scholar 

  7. Ming M, Wang YZ, Wu J, Ma DW, Li QG, Ding JD. Triton X-100 can alter the temporal sequence of the light-driven proton pump of archaerhodopsin 4. FEBS Lett, 2006, 580(28-29): 6749–6753

    Article  CAS  Google Scholar 

  8. Wu J, Ma DW, Wang YZ, Ming M, Balashov SP, Ding JD. Efficient approach to determine the pK(a) of the proton release complex in the photocycle of retinal proteins. J Phys Chem B, 2009, 113(13): 4482–4491

    Article  CAS  Google Scholar 

  9. Birge RR, Gillespie NB, Izaguirre EW, Kusnetzow A, Lawrence AF, Singh D, Song QW, Schmidt E, Stuart JA, Seetharaman S, Wise KJ. Biomolecular electronics: Protein-based associative processors and volumetric memories. J Phys Chem B, 1999, 103(49): 10746–10766

    Article  CAS  Google Scholar 

  10. Yao BL, Li BF, Li XC, Hampp N. Long lifetime M state optical storage in genetic mutant bacteriorhodopsin film. Prog Biochem Biophys, 2001, 28(6): 844–847

    Google Scholar 

  11. Liu SY, Ebrey TG. Photocurrent measurements of the purple membrane oriented in a polyacrylamide gel. Biophys J, 1988, 54, 321–329

    Article  CAS  Google Scholar 

  12. Liu J, Ming M, Liu J, Huang L, Li QG, Ding JD. Preparation and study of bacteriorhodopsin/poly(vinyl alcohol) composite film. Acta Chimica Sinica, 2002, 60(12): 2209–2213

    CAS  Google Scholar 

  13. Ma DW, Ming M, Hong J, Wu J, Li QG, Huang WD, Ding JD. A membrane protein/polymer composite film with photochromic response. Acta Polymerica Sinica, 2006, 9: 1078–1082

    Google Scholar 

  14. Ma DW, Zhao YC, Wu J, Cui T, Ding JD. A block-copolymer hydrogel encapsulates bacteriorhodopsin and produces the longest photochromic response of the membrane protein under high water content conditions. Soft Matter, 2009, 5(23): 4635–4637

    Article  CAS  Google Scholar 

  15. Ma DW, Wang YZ, Wu J, Zhao YC, Ming M, Ding JD. Amphiphilic block copolymers significantly influence functions of bacteriorhodopsin in water. Soft Matter, 2010, 6(19): 4920–4930

    Article  CAS  Google Scholar 

  16. Teng XL, Lu M, Zhao YY, Ma DW, Zhao YC, Ding JD, Huang WD. Photoinduced nonlinear refraction in a polymeric film encapsulating a bacteriorhodopsin mutant. Appl Phys Lett, 2010, 97(7): 071109(1)–071109(3)

    Article  Google Scholar 

  17. Zhao YC, Ming M, Hong J, Ma DW, Wu J, Li QG, Huang WD, Ding JD. Preparation of a gene-engineering mutant of bacteriorhodopsin BR-D96V and corresponding poly(vinyl alcohol)-based functional composite films. Chinese Sci Bull, 2010, 55: 3825–3830

    Article  CAS  Google Scholar 

  18. Weetall HH, Druzhko AB. Optical and electrical characteristics of bacteriorhodopsin gelatin films and tin-oxide coated electrodes. Curr Appl Phys, 2003, 3(2-3): 281–291

    Article  Google Scholar 

  19. Korchemskaya E, Burykin N, de Lera A, Alvarez R, Pirutin S, Druzhko A. 14-Fluoro-bacteriorhodopsin gelatin films for dynamic holography recording. Photochem Photobiol, 2005, 81(4): 920–923

    Article  CAS  Google Scholar 

  20. Liang B, Li LQ, Li ML, Li BF, Jiang L. Photochromic properties of chemically modified bacteriorhodopsin films. In: Lewis KL, Meerholz K. Eds. In: Proceedings of The Society of Photo-optical Instrumentation Engineers. San Jose: SPIE-Int Soc Optical Engineering, 2000, 4104: 64–70

    Google Scholar 

  21. Park SN, Park JC, Kim HO, Song MJ, Suh H. Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linking. Biomaterials, 2002, 23(4): 1205–1212

    Article  CAS  Google Scholar 

  22. Kuijpers AJ, Engbers GHM, Krijgsveld J, Zaat SAJ, Dankert J, Feijen J. Cross-linking and characterisation of gelatin matrices for biomedical applications. J Biomater Sci Polymer Edn, 2000, 11(3): 225–243

    Article  CAS  Google Scholar 

  23. Siebert F, Mantele W, Kreutz W. Evidence for the protonation of two internal carboxylic groups during the photocycle of bacteriorhodopsin — Investigation by kinetic infrared-spectroscopy. FEBS Lett, 1982, 141(1): 82–87

    Article  CAS  Google Scholar 

  24. Otto H, Marti T, Holz M, Mogi T, Lindau M, Khorana HG, Heyn MP. Aspartic acid-96 is the internal proton donor in the reprotonation of the schiff-base of bacteriorhodopsin. Proc Natl Acad Sci USA, 1989, 86(23): 9228–9232

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Wu, J., Ma, D. et al. Preparation of a cross-linked gelatin/bacteriorhodopsin film and its photochromic properties. Sci. China Chem. 54, 405–409 (2011). https://doi.org/10.1007/s11426-010-4213-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4213-7

Keywords

Navigation