Skip to main content
Log in

Kinetic theory of self-condensing vinyl polymerization

  • Reviews
  • SPECIAL TOPIC / Highly Branched Polymers — Promising Architectural Macromolecules
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

This review introduces the kinetic theory of self-condensing vinyl polymerization (SCVP), including the SCVP of AB* inimers, the SCVP with non-equal reactivity between A* and B* groups, the SCVP in the presence of a small amount of multifunctional initiators, also the SCVP of both inimers and comonomers. The analytical expressions of various molecular parameters for the resulting hyperbranched polymers, such as the molecular size distribution function, the average molecular weight, the polydispersity index and the degree of branching, are reviewed systematically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frèchet JMJ, Henmi M, Gitsov I, Aoshima S, Leduc M, Grubbs RB. Self-condensing vinyl polymerization: an approach to dendritic materials. Science, 1995, 269: 1080–1083

    Article  Google Scholar 

  2. Voit BI, Lederer A. Hyperbranched and highly branched polymer architectures—Synthetic strategies and major characterization aspects. Chem Rev, 2009, 109: 5924–5973

    Article  CAS  Google Scholar 

  3. Komber H, Georgi U, Voit B. 1H and 13C NMR spectra of highly branched poly(4-choromethylsty-rene) Signal assignment, structure characteriz—ation, and a SCVP kinetic study. Macromolecules, 2009, 42: 8307–8315

    Article  CAS  Google Scholar 

  4. Kim YH, Webster OW. Hyperbranched polyphenylene. Polym Prepr, 1988, 29(2): 310–311

    CAS  Google Scholar 

  5. Water-soluble hyperbranched polyphenylene: A unimolecular micelle? J Am Chem Soc, 1990, 112: 4592–4593

  6. Hyperbranched polyphenylenes. Macromolecules, 1992, 25: 5561–5572

    Google Scholar 

  7. Gao C, Yan D. Hyperbranched polymers: From synthesis to applications. Prog Polym Sci, 2004, 29: 183–275

    Article  CAS  Google Scholar 

  8. Bednarek M, Biedron T, Helinski J, Kaluzynski K, Kubisa P, Penczek S. Branched polyether with multiple primary hydroxyl groups: Polymerization of 3-ethyl-3-(hydroxymethyl)oxetane. Macromol Rapid Commun, 1999, 20: 369–372

    Article  CAS  Google Scholar 

  9. Magnusson H, Malmström E, Hult A. Synthesis of hyperbranched aliphatic polyethers via cationic ring-opening polymerization of 3-ethyl-3-(hydroxymethyl) oxetane. Macromol Rapid Commun, 1999, 20: 453–457

    Article  CAS  Google Scholar 

  10. Sunder A, Hanselmann R, Frey H, Mülhaupt R. Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromolecules, 1999, 32: 4240–4246

    Article  CAS  Google Scholar 

  11. Liu M, Vladimirov N, Frèchet JMJ. A new approach to hyperbranched polymers by ring-opening polymerization of an AB monomer: 4-(2-hydroxyethyl)-ε-caprolactone. Macromolecules, 1999, 32: 6881–6884

    Article  CAS  Google Scholar 

  12. Yan DY, Hou J, Zhu XY, Kosman JJ, Wu HS. A new approach to control crystallinity of resulting polymers: Self-condensing ring opening polymerization. Macromol Rapid Commun, 2000, 21: 557–561

    Article  CAS  Google Scholar 

  13. Müller AHE, Yan D, Wulkow M. Molecular parameters of hyperbranched polymers made by self-condensing vinyl polymerization. 1. Molecular Weight Distribution. Macromolecules, 1997, 30: 7015–23

    Article  Google Scholar 

  14. Yan D, Müller AHE, Matyjaszewski K. Molecular parameters of hyperbranched polymers made by self-condensing vinyl polymerization. 2. Degree of branching. Macromolecules, 1997, 30: 7024–7033

    Article  CAS  Google Scholar 

  15. Radke W, Litvinenko G, Müller AHE. Effect of core-forming molecules on the molecular weight distribution and degree of branching in the synthesis of hyperbranched polymers. Macromolecules, 1998, 31: 239–248

    Article  CAS  Google Scholar 

  16. Litvinenko GI, Müller AHE. Molecular weight average and degree of branching in self-condensing vinyl copolymerization in the presence of multifunctional initiators. Macromolecules, 2002, 35: 4577–4583

    Article  CAS  Google Scholar 

  17. Litvinenko GI, Simon PFW, Müller AHE. Molecular parameters of hyperbranched copolymer obtained by self-condensing vinyl copolymerization. 1. Equal rate constants. Macromolecules, 1999, 32: 2410–2419; 2. Non-equal rate constants. Macromolecules, 2001, 34: 2418–2426

    Article  CAS  Google Scholar 

  18. Yan D, Zhou Z, Müller AHE. Molecular weight distribution of hyperbranched polymers generated by self-condensing vinyl polymerization in presence of a multifunctional initiator. Macromolecules, 1999, 32: 245–250

    Article  CAS  Google Scholar 

  19. Yan D. Kinetic model for hyperbranched polymerization and copolymerization, Polym Prep, 2000, 41(2): 1403–1404

    CAS  Google Scholar 

  20. Cheng KC. Kinetic model of hyperbranched polymers formed by self-condensing vinyl polymerization of AB* monomers in the presence of multifunctional core molecules with different reactivities. Polymer, 2003, 44: 877–882

    Article  CAS  Google Scholar 

  21. Zhao ZF, Wang HJ, Ba XW. A statistical theory for self-condensing vinyl polymerization. J Chem Phys, 2009, 131: 074101

    Article  Google Scholar 

  22. He X, Liang H, Pan C. Self-condensing vinyl polymerization in the presence of multifunctional initiator with unequal rate constants: Monte Carlo simulation. Polymer, 2003, 44: 6697–706

    Article  CAS  Google Scholar 

  23. He X, Liang H, Pan C. Monte Carlo simulation of hyperbranched copolymerizations in the presence of a multifunctional initiator. Macromol Theory Simul, 2001, 10: 196–203

    Article  CAS  Google Scholar 

  24. Zhou Z, Wang G, Yan D. Kinetic analysis of self-condensing vinyl polymerization with unequal reactivities. Chinese Sci Bull, 2008, 53: 3516–3521

    Article  CAS  Google Scholar 

  25. Zhou Z, Yan D. A general model for the kinetics of self-condensing vinyl polymerization. Macromolecules, 2008, 41(12): 4429–4434

    Article  CAS  Google Scholar 

  26. Zhou Z, Yan D. Effect of multifunctional initiator on self-condensing vinyl polymerization with nonequal molar ratio of stimulus to monomer, Macromolecules, 2009, 42(12): 4047–4052

    Article  CAS  Google Scholar 

  27. Zhou Z, Zhang J, Sheng W, Yan D. Degree of branching of products formed from general self-condensing vinyl polymerization with non-equal reactivities. Acta Chim Sinica (in Chinese), 2008, 66(22): 2547–2552

    CAS  Google Scholar 

  28. Zhou ZP, Jia ZW, Yan DY. Effect of slow monomer addition on molecular parameters of hyperbranched polymers synthesized in the presence of multifunctional core molecules. Sci China Chem, 2010, 53(4): 891–897

    Article  CAS  Google Scholar 

  29. Hawker CJ, Lee R, Fréchet JMJ. One-step synthesis of hyperbranched dendritic polyesters. J Am Chem Soc, 1991, 113: 4583–4588

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiPing Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Z., Yan, D. Kinetic theory of self-condensing vinyl polymerization. Sci. China Chem. 53, 2429–2439 (2010). https://doi.org/10.1007/s11426-010-4150-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4150-5

Keywords

Navigation