Skip to main content
Log in

γ-Hydroxy-α,β-acetylenic esters: asymmetric syntheses and applications

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

γ-Hydroxy-α,β-acetylenic esters are versatile synthetic precursors to many organic compounds. This paper reviews the synthesis of chiral γ-hydroxy-α,β-acetylenic esters by asymmetric reduction of γ-oxo-α,β-acetylenic esters, enantioselective addition to aldehydes in the presence of chiral catalysts, and diastereoselective addition to chiral aldehydes. The preparation of racemic γ-hydroxy-α,β-acetylenic esters is also included. Examples are provided for the application of γ-hydroxy-α,β-acetylenic esters in organic synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Midland MM, Tramontano A, Cable JR. Synthesis of alkyl 4-hydroxy-2-alkynoates. J Org Chem, 1980, 45: 28–29

    Article  CAS  Google Scholar 

  2. Frantz DE, Fässler R, Tomooka CS, Carreira EM. The discovery of novel reactivity in the development of C-C bond-forming reactions: in situ generation of zinc acetylides with Zn-II/R3N. Acc Chem Res, 2000, 33: 373–381

    Article  CAS  Google Scholar 

  3. Pu L. Asymmetric alkynylzinc additions to aldehydes and ketones. Tetrahedron, 2003, 59: 9873–9886

    Article  CAS  Google Scholar 

  4. Cozzi PG, Hilgraf R, Zimmermann N. Acetylenes in catalysis: enantioselective additions to carbonyl groups and imines and applications beyond. Eur J Org Chem, 2004, 4095-4105

  5. Si YG, Yu G, Huan H, Jiang B. Progress in addition reactions of terminal alkynes to C=O and C=N bonds. Chin J Org Chem (in Chinese), 2004, 24: 1389–1395

    CAS  Google Scholar 

  6. Lu G, Li YM, Li XS, Chan ASC. Synthesis and application of new chiral catalysts for asymmetric alkynylation reactions. Coord Chem Rev, 2005, 249: 1736–1744

    Article  CAS  Google Scholar 

  7. Trost BM, Weiss AH. The enantioselective addition of alkyne nucleophiles to carbonyl groups. Adv Synth Catal, 2009, 351: 963–983

    Article  CAS  Google Scholar 

  8. Nincham AW, Raphael RA. Compounds related to penicillic acid. Part IV. Synthesis of a phenyl analogue. Chem Commun, 1949, 118–121

  9. Sonye JP, Koide K. Organic base-catalyzed stereoselective isomerizations of 4-hydroxy-4-phenyl-but-2-ynoic acid methyl ester to (E)- and (Z)-4-oxo-4-phenyl-but-2-enoic acid methyl esters. Syn Commun, 2006, 36: 599–602

    Article  CAS  Google Scholar 

  10. Sonye JP, Koide K. On the mechanism of DABCO-catalyzed isomerization of γ-hydroxy-α,β-alkynoates to γ-oxo-α,β-(E)-alkenoates. Org Lett, 2006, 8: 192–202

    Article  Google Scholar 

  11. Sonye JP, Koide K. Base-catalyzed stereoselective isomerization of electron-deficient propargylic alcohols to E-enones. J Org Chem, 2006, 71: 6254–6257

    Article  CAS  Google Scholar 

  12. Eddine Saïah MK, Pellicciari R. Rhodium-catalysed redox isomerization of hydroxy alkynes to trans keto and hydroxy vinyl esters. A short and stereoselective synthesis of dipeptide isosters. Tetrahedron Lett, 1995, 36: 4497–4500

    Article  Google Scholar 

  13. Gu C, Lu XY. A novel deoxygenation-isomerization reaction of 4-hydroxy-2-ynoic esters and gamma-hydorxy-alpha,beta-ynones. J Chem Soc, Chem Comm, 1993, 394-395

  14. Yue Y, Yu XQ, Pu L. Base-catalyzed highly stereoselective conversion of γ-hydroxy-α,β-acetylenic esters to γ-acetoxy dienoates. Chem Eur J, 2009, 15: 5104–5107

    Article  CAS  Google Scholar 

  15. Midland MM, McDowell DC, Hatch RL, Tramontano R. Reduction of α,β-acetylenic ketones with B-3-pinanyl-9-borabicyclo[3.3.l]nonane. High asymmetric induction in aliphatic systems. J Am Chem Soc, 1980, 102: 867–869

    Article  CAS  Google Scholar 

  16. Midland MM, Tramontano A, Zderic SA. The facile reaction of B-alkyl-9-borabicyclo[3.3.l]nonanes with benzaldehyde. J Organomet Chem, 1977, 134: C17–C19

    Article  CAS  Google Scholar 

  17. Midland MM, Tramontano A, Zderic SA. The reaction of ρ-alkyl-9-borabicyclo[3.3.1]nonanes with aldehydes and ketones. A facile elimination of the alkyl group by aldehydes. J Organomet Chem, 1978, 156: 203–211

    Article  CAS  Google Scholar 

  18. Midland MM, Tramontano A, Kazubski A, Graham RS, Tsai DJS, Cardin DB. Asymmetric reductions of propargyl ketones. An effective approach to the synthesis of optically-active compounds. Tetrahedron, 1984, 40: 1371–1380

    Article  CAS  Google Scholar 

  19. Midland MM, Kazubski A. Reduction of α,β-acetylenic ketones to (S)-propargyl alcohols of high enantiomeric purity. J Org Chem, 1982, 47: 2814–2816

    Article  CAS  Google Scholar 

  20. Midland MM. Asymmetric reductions with organoborane reagents. Chem Rev, 1989, 89: 1553–1561

    Article  CAS  Google Scholar 

  21. Noyori R, Tomino I, Yamada M, Nishizawa M. Synthetic applications of the enantioselective reduction by binaphthol-modified lithium aluminum hydride reagents. J Am Chem Soc, 1984, 106: 6717–6725

    Article  CAS  Google Scholar 

  22. Bowden K, Heilbron IM, Jones ERH, Weedon BCL. 13. Researches on acetylenic compounds. Part I. The preparation of acetylenic ketones by oxidation of acetylenic carbinols and glycols. J Chem Soc, 1946, 39–45

  23. Crimmins MT, Nantermet PG, Trotter BW, Vallin IM, Watson PS, McKerlie LA, Reinhold TL, Cheung AWH, Stetson KA, Dedopoulou D, Gray JL. Addition of zinc homoenolates to acetylenic esters and amides: a formal [3+2] cycloaddition. J Org Chem, 1993, 58: 1038–1047

    Article  CAS  Google Scholar 

  24. Ishikawa T, Mizuta T, Hagiwara K, Aikawa T, Kudo T, Saito S. Catalytic alkynylation of ketones and aldehydes using quaternary ammonium hydroxide base. J Org Chem, 2003, 68: 3702–3705

    Article  CAS  Google Scholar 

  25. Shahi SP, Koide K. A mild method for the preparation of γ-hydroxy-α,β-acetylenic esters. Angew Chem Int Ed, 2004, 43: 2525–2527

    Article  CAS  Google Scholar 

  26. Davis RB, Scheiber DH. The preparation of acetylenic ketones using soluble silver acetylides. J Am Chem Soc, 1956, 78: 1675–1678

    Article  CAS  Google Scholar 

  27. Albert BJ, Koide K. Zirconium-promoted epoxide rearrangement-alkynylation sequence. J Org Chem, 2008, 73: 1093–1098

    Article  CAS  Google Scholar 

  28. Downey CW, Mahoney BD, Lipari VR. Trimethylsilyl trifluoromethanesulfonate-accelerated addition of catalytically generated zinc acetylides to aldehydes. J Org Chem, 2009, 74: 2904–2906

    Article  CAS  Google Scholar 

  29. Naka T, Koide K. A novel and simple method to prepare γ-hydroxy-α,β-(E)-alkenoic esters from γ-keto-alkynoic esters. Tetrahedron Lett, 2003, 44: 443–445

    Article  CAS  Google Scholar 

  30. Frantz DE, Fssler R, Carreira EM. Facile enantioselective synthesis of propargylic alcohols by direct addition of terminal alkynes to aldehydes. J Am Chem Soc, 2000, 122: 1806–1807

    Article  CAS  Google Scholar 

  31. Anand NK, Carreira EM. A simple, mild, catalytic, enantioselective addition of terminal acetylenes to aldehydes. J Am Chem Soc, 2001, 123: 9687–9688

    Article  CAS  Google Scholar 

  32. Trost BM, Ball ZT, Jöge T. Regioselective hydrosilylation of propargylic alcohols: an aldol surrogate. Angew Chem Int Ed, 2003, 42: 3415–3418

    Article  CAS  Google Scholar 

  33. Moore D, Pu L. BINOL-catalyzed highly enantioselective terminal alkyne additions to aromatic aldehydes. Org Lett, 2002, 4: 1855–1857

    Article  CAS  Google Scholar 

  34. Gao G. Moore D, Xie RG, Pu L. Highly enantioselective phenylacetylene additions to both aliphatic and aromatic aldehydes. Org Lett, 2002, 4: 4143–4146

    Article  CAS  Google Scholar 

  35. Gao G. Xie RG, Pu L. Highly enantioselective alkyne additions to aldehydes in the presence of 1,1′-bi-2-naphthol and hexamethylphosphoramide. Proc Natl Acad Sci USA, 2004, 101: 5417–5420

    Article  CAS  Google Scholar 

  36. Gao G, Wang Q, Yu XQ, Xie RG, Pu L. Highly enantioselective synthesis of γ-hydroxy-α,β-acetylenic esters by asymmetric alkyne addition to aldehydes. Angew Chem Int Ed, 2006, 45: 122–125

    Article  CAS  Google Scholar 

  37. Yang F, Xi PH, Yang L, Lan JB, Xie RG, You JS. Facile, mild, and highly enantioselective alkynylzinc addition to aromatic aldehydes by BINOL/N-methylimidazole dual catalysis. J Org Chem, 2007, 72: 5457–5460

    Article  CAS  Google Scholar 

  38. Rajaram AR, Pu L. Regiospecific hydration of γ-hydroxy-α,β-acetylenic esters: a novel asymmetric synthesis of tetronic acids. Org Lett, 2006, 8: 2019–2021

    Article  CAS  Google Scholar 

  39. Qin YC, Liu L, Sabat M, Pu L. Synthesis of the bifunctional BINOL ligands and their applications in the asymmetric additions to carbonyl compounds. Tetrahedron, 2006, 62: 9335–9348

    Article  CAS  Google Scholar 

  40. Turlington M, DeBerardinis AM, Pu L. Highly enantioselective catalytic alkyl propiolate addition to aliphatic aldehydes. Org Lett, 2009, 11: 2441–2444

    Article  CAS  Google Scholar 

  41. Trost BM, Weiss AH, von Wangelin AJ. Dinuclear Zn-catalyzed asymmetric alkynylation of unsaturated aldehydes. J Am Chem Soc, 2006, 128: 8–9

    Article  CAS  Google Scholar 

  42. Xu ZQ, Wang R, Xu JK, Da CS, Yan WJ, Chen C. Highly enantioselective addition of phenylacetylene to aldehydes catalyzed by a β-sulfonamide alcohol-titanium complex. Angew Chem Int Ed, 2003, 42: 5747–5749

    Article  CAS  Google Scholar 

  43. Lin L, Jiang XX, Liu WX, Qiu L, Xu ZQ, Xu JK, Chan ASC, Wang R. Highly enantioselective synthesis of γ-hydroxy-α,β-acetylenic esters catalyzed by α,β-sulfonamide alcohol. Org Lett, 2007, 9: 2329–2332

    Article  CAS  Google Scholar 

  44. Qiu L, Wang Q, Lin L, Liu XD, Jiang XX, Zhao QY, Hu GW, Wang R. Highly enantioselective addition of terminal alkynes to aldehydes catalyzed by a new chiral β-sulfonamide alcohol/Ti(Oi-Pr)4/Et2Zn/R3N catalyst system. Chirality, 2009, 21: 316–323

    Article  CAS  Google Scholar 

  45. Liebehentschel S, Cvengroš J, Jacobi von Wangelin A. Hydroxymethylpyridine catalysts for the enantioselective alkynylation of aldehydes. Synlett, 2007, 2574-2578

  46. Zhong JC, Hou SC, Bian QH, Yin MM, Na RS, Zheng B, Li ZY, Liu SZ, Wang M. Highly enantioselective zinc/amino alcohol-catalyzed alkynylation of aldehydes. Chem Eur J, 2009, 15: 3069–3071

    Article  CAS  Google Scholar 

  47. Mikami K, Yoshida A, Matsumoto Y. Catalytic asymmetric carbonyl-ene reactions with alkynylogous and vinylogous glyoxylates: application to controlled synthesis of chiral isocarbacyclin analogues. Tetrahedron Lett, 1996, 37: 8515–8518

    Article  CAS  Google Scholar 

  48. Gorgues A, Simon A, LeCoq A, Hercouet A, Corre F. Versatilite de reactivite de l’acetylene dicarbaldehyde et des aldehydes α-acetyleniques a l’egard des dienes conjugues cycliques et heterocycliques en milieu acide. Tetrahedron, 1986, 42: 351–370

    Article  CAS  Google Scholar 

  49. Gupta CM, Jones GH, Moffatt JG. C-Glycosyl nucleosides. 9. An approach to the synthesis of purine-related C-glycosides. J Org Chem, 1976, 41: 3000–3009

    Article  CAS  Google Scholar 

  50. Dixon DJ, Krause L, Ley SV. Rapid assembly of anti,anti-1,2,3-triol motifs via stereoselective addition of organometallics to aldehydes obtained from (R′,R′,S,R)-2,3-butane diacetal protected butanetetraol derivatives. J Chem Soc, Perkin Trans 1, 2001, 2516–2518

  51. Clive DLJ, Tao Y, Bo YX, Hu YZ, Selvakumar N, Sun SY, Daigneault S, Wu YJ. Synthetic studies on calicheamicin γI-synthesis of (−)-calicheamicinone and models representing the four sugars and the aromatic system. Chem Comm, 2000, 1341–1350

  52. Hirama M, Nishizaki I, Shigemoto T, Itô S. New acyclic approach to 3-amino-2,3,6-trideoxy-L-hexoses: a stereocontrolled synthesis of N-benzoyl L-daunosamine. Chem Commun, 1986, 393-394

  53. Hirama M, Shigemoto T, Itô S. Stereodivergent total synthesis of N-acetylacosamine and N-benzoylristosamine. J Org Chem, 1987, 52: 3342–3354

    Article  CAS  Google Scholar 

  54. Srinivasa Rao K, Mukkanti K, Srinivasa Reddy D, Pal M, Iqbal J. A simple procedure for the synthesis of γ-hydroxy-α,β-(E)-alkenoic esters: formal synthesis of (+)-macrosphelides A and B. Tetrahedron Lett, 2005, 46: 2287–2290

    Article  CAS  Google Scholar 

  55. Fray AH, Kaye RL, Kleinman EF. A short, stereoselective synthesis of the lactone precursor to 2R,45,5S hydroxyethylene dipeptide isosteres. J Org Chem, 1986, 51: 4828–4833

    Article  CAS  Google Scholar 

  56. Ghosh AK, Shin D, Downs D, Koelsch G, Lin XL, Ermolieff J, Tang J. Design of potent inhibitors for human brain memapsin 2 (β-secretase). J Am Chem Soc, 2000, 122: 3522–3523

    Article  CAS  Google Scholar 

  57. Cauwberghs S, De Clercq PJ. Factors affecting ease of ring formation. The effect of anchoring substitution on the rate of an intramolecular Diels-Alder reaction with furan-diene. Tetrahedron Lett, 1988, 29: 2493–2496

    Article  CAS  Google Scholar 

  58. Garner P, Park JM. Glycosyl α-aminoacids via stereocontrolled buildup of a penaldic acid equivalent. An asymmetric synthesis of thymine polyoxin C. Tetrahedron Lett, 1989, 30: 5065–5068

    Article  CAS  Google Scholar 

  59. Garner P, Park JM. Glycosyl α-aminoacids via stereocontrolled buildup of a penaldic acid equivalent. A novel synthetic approach to the nucleosidic component of the polyoxins and related substances. J Org Chem, 1990, 55: 3772–3787

    Article  CAS  Google Scholar 

  60. Altenbach IJ, Himmeldirk K. Stereocontrolled synthesis of 1,5-dideoxy-l,5-imino-allitol (1-deoxy-allonojirimycin) from serine. Tetrahedron: Asymmetry, 1995, 6: 1077–1080

    Article  CAS  Google Scholar 

  61. Baldoli C, Del Buttero P, Licandro E, Maiorana S, Papagni A, Torchio M. Stereoselective alkynylation of chiral benzaldehyde chromium tricarbonyl complexes. Synthesis of optically active alkynyl alcohols. Tetrahedron Lett, 1993, 34: 7943–7946

    Article  Google Scholar 

  62. Su YL, Yang CS, Teng SJ, Zhao G, Ding Y. Total synthesis of four diastereoisomers of goniofufurone from D-(−) or L-(+)-tartaric acid. Tetrahedron, 2001, 57: 2147–2153

    Article  CAS  Google Scholar 

  63. Trost BM, Crawley ML. 4-Aryloxybutenolides as “chiral aldehyde” equivalents: An efficient enantioselective synthesis of (+)-brefeldin A. J Am Chem Soc, 2002, 124: 9328–9329

    Article  CAS  Google Scholar 

  64. Zhang HL, Ni YK, Zhao G, Ding YA. Convenient synthesis of 1-deoxy-8a-epi-castanospermine diastereoisomers (6R,7R,8S,8aS)-6,7,8-trihydroxyindolizidine and (6R,7R,8R,8aS)-6,7,8-trihydroxyindolizidine. Eur J Org Chem, 2003, 1918-1922

  65. Mukaiyama T, SuzuKi T. Asymmetric addition of acetylide to aliphatic aldehydes-preparation of optically active 5-octyl-2(5H)-furanone. Chem Lett, 1980, 255-256

  66. Lebel H, Parmentier M. Copper-catalyzed methylenation reaction: Total synthesis of (+)-desoxygaliellalactone. Org Lett, 2007, 9: 3563–3566

    Article  CAS  Google Scholar 

  67. Zhou LH, Yu XQ, Pu L. Reactivity of γ-hydroxy-α,β-acetylenic esters with amines: facile synthesis of the optically active 4-amino-2(5H)-furanones. J Org Chem, 2009, 74: 2013–2017

    Article  CAS  Google Scholar 

  68. Arcadi A, Cacchi S, Fabrizi G, Marinelli F, Pace P. Palladium-catalyzed hydrovinylation of vinyl triflates with alkynes an approach to the synthesis of 3-vinylfuran-2(5H)-ones. Eur J Org Chem, 1999, 3305–3313

  69. Alfonsi M, Arcadi A, Chiarini M, Marinelli F. Sequential rhodium-catalyzed stereo- and regioselective addition of organoboron derivatives to the alkyl 4-hydroxy-2-alkynoates/lactonizaction reaction. J Org Chem, 2007, 72: 9510–9517

    Article  CAS  Google Scholar 

  70. Oh CH, Park SJ, Ryu JH, Gupta AK. Regioselective Pd-catalyzed alkylative lactonizations of 4-hydroxy-2-alkynecarboxylates with organoboronic acids. Tetraherdon Lett, 2004, 45: 7039–7042

    Article  CAS  Google Scholar 

  71. Albert BJ, Sivaramakrishnan A, Naka T, Koide K. Total synthesis of FR901464, an antitumor agent that regulates the transcription of oncogenes and tumor suppressor genes. J Am Chem Soc, 2006, 128: 2792–2793

    Article  CAS  Google Scholar 

  72. Meta CT, Koide K. Trans-selective conversions of γ-hydroxy-α,β-alkynoic esters to γ-Hydroxy-α,β-alkenoic esters. Org Lett, 2004, 6: 1785–1787

    Article  CAS  Google Scholar 

  73. Trost BM, Weiss AH. Catalytic enantioselective synthesis of adociacetylene B. Org Lett, 2006, 8: 4461–4464

    Article  CAS  Google Scholar 

  74. Osman S, Koide K. Cyclic acetal formation between 2-pyridinecar-boxyaldehyde and γ-hydroxy-α,β-acetylenic esters. Tetrahedron Lett, 2008, 49: 6550–6552

    Article  CAS  Google Scholar 

  75. Gupta AK, Rhim CY, Oh CH. Unprecedented carbocyclization of 1,6-allenynes on addition of organoboronic acids under Pd-catalysis. Tetrahedron Lett, 2005, 46: 2247–2250

    Article  CAS  Google Scholar 

  76. Oh CH, Jung SH, Park DI, Choi JH. Palladium-catalyzed cycloreduction of 5-allen-1-ynes. Tetrahedron Lett, 2004, 45: 2499–2502

    Article  CAS  Google Scholar 

  77. Yue Y, Turlington M, Yu XQ, Pu L. 3,3′-Anisyl-substituted BINOL, H4BINOL and H8BINOL ligands: asymmetric synthesis of diverse propargylic alcohols and their ring-closing metathesis to chiral cycloalkenes. J Org Chem, 2009, 74: 8681–8689

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ge Gao or Lin Pu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, G., Pu, L. γ-Hydroxy-α,β-acetylenic esters: asymmetric syntheses and applications. Sci. China Chem. 53, 21–35 (2010). https://doi.org/10.1007/s11426-010-0023-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-0023-1

Keywords

Navigation