Skip to main content
Log in

Detection performance of a portable ion mobility spectrometer with 63Ni radioactive ionization for chemical warfare agents

  • Original Article
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

The detection performance of a portable ion mobility spectrometer (IMS) (SABRE 4000, Smiths Detection) with 63Ni ionization, air purification, and reduced ion mobility measurements using calibrants was investigated for vapors of chemical warfare agents. In a matter of several seconds, the SABRE 4000 enabled tentative identification of sarin, soman, cyclohexylsarin, tabun, and nitrogen mustard 3, each with a limit of alarm (LOA) of 0.005–0.5 mg m−3 in positive ion collection mode. Hydrogen cyanide could be identified with a LOA of 0.2 mg m−3 in the negative mode. Mustard gas, nitrogen mustards 1, 2, and 3, phosgene, and chloropicrin showed a positive alarm of “HD/Phos” with a LOA of 0.2–2 mg m−3 in negative mode. Lewisite 1, cyanogen chloride, and chlorine vapors did not show any alarm, although the characteristic ion peaks appeared in negative mode. The peak areas of the respective detected ions on the second differentiation spectra were positively correlated with the corresponding vapor concentrations in low concentration ranges. Several chemical agent simulants and organic solvents were also examined for detection by the machine. The SABRE 4000 is superior to other portable IMS machines at this time, although some improvements of the system are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Somani SM (1992) Chemical warfare agents. Academic, San Diego

    Google Scholar 

  2. Stewart CE, Sullivan JB Jr (1992) Military munitions and antipersonnel agents. In: Sullivan JB Jr, Krieger GR (eds) Hazardous materials toxicology-clinical principles of environmental health. Williams and Wilkins, Baltimore, pp 986–1014

    Google Scholar 

  3. Marrs TC, Maynard RL, Sidell FR (1996) Chemical warfare agents: toxicology and treatment. Wiley, Chichester

    Google Scholar 

  4. Society for Countermeasure against Chemical, Biological, Radiological, Nuclear and Explosive Terrorism (2008) Nuclear, biological and chemical terrorism countermeasure handbook (in Japanese). Shindan To Chiryo Sha, Tokyo

    Google Scholar 

  5. Seto Y, Tsunoda N, Kataoka M, Tsuge K, Nagano T (2000) Toxicological analysis of victim’s blood and crime scene evidence samples in the sarin gas attack caused by the Aum Shinrikyo cult. In: Tu AT, Gaffield W (eds) Natural and selected synthetic toxins-biological implications. American Chemical Society, Washington DC, pp 318–332

    Google Scholar 

  6. Seto Y (2006) On-site detection method for biological and chemical warfare agents (in Japanese with English abstract). Bunseki Kagaku 55:891–906

    Article  CAS  Google Scholar 

  7. Harris CM (2002) The science of detecting terror. Anal Chem 74:126A–133A

    CAS  PubMed  Google Scholar 

  8. Smith WD (2002) Analytical chemistry at the forefront of homeland defense. Anal Chem 74:462A–466A

    CAS  PubMed  Google Scholar 

  9. Fittch JP, Raber F, Imbro DR (2003) Technology challenge in responding to biological and chemical attacks in the civilian sector. Science 302:1350–1354

    Article  Google Scholar 

  10. Carrico JP, Davis AW, Campbell DN, Roehl JE, Sima GR, Spangler GE, Vora KN, White RJ (1986) Chemical detection and alarm for hazardous chemicals. Am Lab 18:152–163

    CAS  Google Scholar 

  11. Cottingham K (2003) Ion mobility spectrometry rediscovered. Anal Chem 75:435A–439A

    Article  CAS  Google Scholar 

  12. Eiceman GA, Stone JA (2004) Ion mobility spectrometers in national defense. Anal Chem 76:390A–397A

    CAS  PubMed  Google Scholar 

  13. St. Louis RH, Hill HH Jr (1990) Ion mobility spectrometry in analytical chemistry. Crit Rev Anal Chem 21:321–355

    Article  CAS  Google Scholar 

  14. Hill HH Jr, Siems WF, St. Louis RH, McMinn DG (1990) Ion mobility spectrometry. Anal Chem 62:1201A–1209A

    Article  CAS  PubMed  Google Scholar 

  15. Zimmermann S, Barth S, Baether WKM, Ringer J (2008) Miniaturized low-cost ion mobility spectrometer for fast detection of chemical warfare agents. Anal Chem 80:6671–6676

    Article  CAS  PubMed  Google Scholar 

  16. Kolakowski BM, Mester Z (2007) Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential mobility spectrometry (DMS). Analyst 132:842–862

    Article  CAS  PubMed  Google Scholar 

  17. Eiceman GA, Wang YF, Garcia-Gonzalez L, Harden CS, Shoff DB (1995) Enhanced selectivity in ion mobility spectrometry analysis of complex mixtures by alternate reagent gas chemistry. Anal Chim Acta 306:21–33

    Article  CAS  Google Scholar 

  18. Kanu AB, Wu C, Hill HH Jr (2008) Rapid pretreatment of interferences for ion mobility spectrometry. Anal Chim Acta 610:125–134

    Article  CAS  PubMed  Google Scholar 

  19. Seto Y, Kanamori-Kataoka M, Tsuge K, Ohsawa I, Matsushita K, Sekiguchi H, Itoi T, Iura K, Sano Y, Yamashiro S (2005) Sensing technology for chemical-warfare agents and its evaluation using authentic agents. Sens Actuat B 108:193–197

    Article  Google Scholar 

  20. Seto Y (2006) Analytical and on-site detection methods for chemical warfare agents (in Japanese with English abstract). Yakugaku Zasshi 126:1279–1299

    Article  CAS  PubMed  Google Scholar 

  21. Seto Y, Maruko H, Sekiguchi H, Sano Y, Yamashiro S, Matsushita K, Sekiguchi H, Itoi T, Iura K, Kanamori-Kataoka M, Tsuge K, Ohsawa I (2007) Development of an on-site detection method for chemical and biological warfare agents. J Toxicol Toxin Rev 26:299–312

    CAS  Google Scholar 

  22. Seto Y, Kanamori-Kataoka M, Tsuge K (2008) Mass spectrometric technologies for countering chemical and biological terrorism incidents (in Japanese with English abstract). J Mass Spectrom Soc Jpn 56:91–115

    CAS  Google Scholar 

  23. Seto Y (2009) On-site detection of chemical warfare agents. In: Gupta RC (ed) Handbook of toxicology of chemical warfare agents. Academic, San Diego, pp 813–825

    Chapter  Google Scholar 

  24. Takayama Y, Sekioka R, Sekiguchi H, Maruko H, Ohmori T, Seto Y (2007) Detection performance of Drager safety gas detection tubes for chemical warfare agents (in Japanese with English abstract). Bunseki Kagaku 56:355–362

    Article  CAS  Google Scholar 

  25. Matsushita K, Sekiguchi H, Seto Y (2005) Performance of portable surface acoustic wave sensor array chemical agent detector (in Japanese with English abstract). Bunseki Kagaku 54:83–88

    Article  CAS  Google Scholar 

  26. Sekiguchi H, Matsushita K, Yamashiro S, Sano Y, Seto S, Okuda T, Sato A (2006) On-site determination of nerve gases and mustard gas using a field-portable gas chromatographymass spectrometer. Forensic Toxicol 24:17–22

    Article  CAS  Google Scholar 

  27. Seto Y, Iura K, Itoi T, Tsuge K, Kataoka M (2004) Detection performance of chemical agent detector M90 (in Japanese with English abstract). Jpn J Sci Tech Iden 9:39–47

    Article  Google Scholar 

  28. Kishi S, Asada R, Sekioka R, Sedeyama M, Shiga M, Seto Y (2010) Evaluation of detection performance of portable aspiration-type ion mobility spectrometer with seven detection cells for chemical warfare agents (in Japanese with English abstract). Bunseki Kagaku 59:65–76

    Article  CAS  Google Scholar 

  29. Maruko H, Sekiguchi H, Seto Y, Sato A (2006) Detection performance of aspiration-type ion mobility spectrometer for chemical warfare agents (in Japanese with English abstract). Bunseki Kagaku 55:191–197

    Article  CAS  Google Scholar 

  30. Sekioka R, Takayama Y, Seto Y, Urasaki Y, Shinzawa H (2007) Detection performance of portable corona discharge ionization type ion mobility spectrometer for chemical warfare agents (in Japanese with English abstract). Bunseki Kagaku 56:17–22

    Article  Google Scholar 

  31. Spangler GE, Carrico JP (1983) Membrane inlet for ion mobility spectrometry (plasma chromatography). Int J Mass Spectrom Ion Phys 52:267–287

    Article  CAS  Google Scholar 

  32. Kim SH, Spangler GE (1985) Ion mobility spectrometry/mass spectrometry of two structurally different ions having identical ion mass. Anal Chem 57:567–569

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Seto.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, S., Asada, R., Kishi, S. et al. Detection performance of a portable ion mobility spectrometer with 63Ni radioactive ionization for chemical warfare agents. Forensic Toxicol 28, 84–95 (2010). https://doi.org/10.1007/s11419-010-0092-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-010-0092-z

Keywords

Navigation