Skip to main content

Advertisement

Log in

β-elemene affects angiogenesis of infantile hemangioma by regulating angiotensin-converting enzyme 2 and hypoxia-inducible factor-1 alpha

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Infantile hemangioma (IH) is the most common benign vascular tumor resulting from the hyper-proliferation of vascular endothelial cells. In treatment of various tumors including IH, β-elemene, a compound extracted from Rhizoma zedoariae, has been reported to have anti-tumor effect. However, the underlying mechanisms of β-elemene in hemangioma have remained uninvestigated. In this presented study, functional analysis showed that low concentrations of β-elemene promoted the proliferation, migration and tube formation of human hemangioma endothelial cells (HemECs), while high concentrations of β-elemene produced inhibitory effects. Further, we also found that angiotensin-converting enzyme 2 (ACE2) expression was down-regulated at both mRNA and protein levels, while hypoxia-inducible factor-1 alpha (HIF-1-α) was up-regulated in infantile hemangiomas tissues and HemECs at both mRNA and protein levels. This result suggested that ACE2 and HIF-1-α play roles in IH. ACE2 expression was down-regulated with the treatment of β-elemene at different dosage point. Interestingly, the expression of Vascular endothelial growth factor-A (VEGFA) increased with treatment of low concentrations of β-elemene in HemECs, in contrary, the expression of VEGFA expression decreased with treatment of high concentrations of β-elemene. Moreover, if the concentration of β-elemene reached 40 μg/ml or higher, the expression of HIF-1-α decreased. Taken together, our data indicated that the different effects of β-elemene on the proliferation, migration and angiogenesis of hemangioma at different concentrations: The ACE2 signaling pathway dominates with treatment of low concentrations of β-elemene, stimulating the expression of downstream VEGFA to promote the angiogenesis of hemangioma; under the condition of high concentrations of β-elemene, the HIF-1-α signaling pathway inhibits the expression of VEGFA and further inhibits the angiogenesis of hemangioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li Q, Yu Y, Bischoff J, Mulliken JB, Olsen BR (2003) Differential expression of CD146 in tissues and endothelial cells derived from infantile haemangioma and normal human skin. J Pathol 201:296–302

    Article  CAS  Google Scholar 

  2. Kumakiri M, Muramoto F, Tsukinaga I, Yoshida T, Ohura T, Miura Y (1983) Crystalline lamellae in the endothelial cells of a type of hemangioma characterized by the proliferation of immature endothelial cells and pericytes–angioblastoma (Nakagawa). J Am Acad Dermatol 8:68–75

    Article  CAS  Google Scholar 

  3. Boscolo E, Mulliken JB, Bischoff J (2013) Pericytes from infantile hemangioma display proangiogenic properties and dysregulated angiopoietin-1. Arterioscler Thromb Vasc Biol 33:501–509

    Article  CAS  Google Scholar 

  4. Rotter A, de Oliveira ZNP (2017) Infantile hemangioma: pathogenesis and mechanisms of action of propranolol. J Dtsch Dermatol Ges 15:1185–1190

    PubMed  Google Scholar 

  5. Leaute-Labreze C, Harper JI, Hoeger PH (2017) Infantile haemangioma. Lancet 390:85–94

    Article  Google Scholar 

  6. Rui D, Xiaoyan C, Taixiang W, Guanjian L (2007) Elemene for the treatment of lung cancer. Cochrane Database Syst Rev 4:CD006054

    Google Scholar 

  7. Yu Z, Wang R, Xu L, Dong J, Jing Y (2008) N-(beta-Elemene-13-yl)tryptophan methyl ester induces apoptosis in human leukemia cells and synergizes with arsenic trioxide through a hydrogen peroxide dependent pathway. Cancer Lett 269:165–173

    Article  CAS  Google Scholar 

  8. Tan W, Lu J, Huang M, Li Y, Chen M, Wu G, Gong J, Zhong Z, Xu Z, Dang Y et al (2011) Anti-cancer natural products isolated from chinese medicinal herbs. Chin Med 6:27

    Article  CAS  Google Scholar 

  9. Li QQ, Wang G, Zhang M, Cuff CF, Huang L, Reed E (2009) beta-Elemene, a novel plant-derived antineoplastic agent, increases cisplatin chemosensitivity of lung tumor cells by triggering apoptosis. Oncol Rep 22:161–170

    CAS  PubMed  Google Scholar 

  10. Feng HB, Wang J, Jiang HR, Mei X, Zhao YY, Chen FR, Qu Y, Sai K, Guo CC, Yang QY et al (2017) beta-Elemene selectively inhibits the proliferation of glioma stem-like cells through the downregulation of Notch1. Stem Cells Transl Med 6:830–839

    Article  CAS  Google Scholar 

  11. Chen W, Lu Y, Wu J, Gao M, Wang A, Xu B (2011) Beta-elemene inhibits melanoma growth and metastasis via suppressing vascular endothelial growth factor-mediated angiogenesis. Cancer Chemother Pharmacol 67:799–808

    Article  CAS  Google Scholar 

  12. Yu Z, Wu F, Chen L, Li Q, Wang C, Dong J, Xie SQ (2014) ETME, a novel beta-elemene derivative, synergizes with arsenic trioxide in inducing apoptosis and cell cycle arrest in hepatocarcinoma cells via a p53-dependent pathway. Acta Pharm Sin B 4:424–429

    Article  Google Scholar 

  13. Zhu T, Xu Y, Dong B, Zhang J, Wei Z, Xu Y, Yao Y (2011) beta-elemene inhibits proliferation of human glioblastoma cells through the activation of glia maturation factor beta and induces sensitization to cisplatin. Oncol Rep 26:405–413

    CAS  PubMed  Google Scholar 

  14. Zou K, Liu C, Zhang Z, Zou L (2015) The effect of elemene on lung adenocarcinoma A549 cell radiosensitivity and elucidation of its mechanism. Clinics (Sao Paulo) 70:556–562

    Article  Google Scholar 

  15. Liu S, Zhou L, Zhao Y, Yuan Y (2015) beta-elemene enhances both radiosensitivity and chemosensitivity of glioblastoma cells through the inhibition of the ATM signaling pathway. Oncol Rep 34:943–951

    Article  CAS  Google Scholar 

  16. Leaute-Labreze C, Voisard JJ, Moore N (2015) Oral propranolol for infantile hemangioma. N Engl J Med 373:284–285

    Article  CAS  Google Scholar 

  17. Chim H, Gosain AK (2011) Discussion: oral prednisolone for infantile hemangioma: efficacy and safety using a standardized treatment protocol. Plast Reconstr Surg 128:753–754

    Article  CAS  Google Scholar 

  18. Greene AK, Couto RA (2011) Oral prednisolone for infantile hemangioma: efficacy and safety using a standardized treatment protocol. Plast Reconstr Surg 128:743–752

    Article  CAS  Google Scholar 

  19. Peng Q, Liu W, Zhou F, Wang Y, Ji Y (2011) An experimental study on the therapy of infantile hemangioma with recombinant interferon gamma. J Pediatr Surg 46:496–501

    Article  Google Scholar 

  20. Chen ZY, Wang QN, Zhu YH, Zhou LY, Xu T, He ZY, Yang Y (2019) Progress in the treatment of infantile hemangioma. Ann Transl Med 7:692

    Article  CAS  Google Scholar 

  21. Li CL, Chang L, Guo L, Zhao D, Liu HB, Wang QS, Zhang P, Du WZ, Liu X, Zhang HT et al (2014) beta-elemene induces caspase-dependent apoptosis in human glioma cells in vitro through the upregulation of Bax and Fas/ FasL and downregulation of Bcl-2. Asian Pac J Cancer Prev 15:10407–10412

    Article  Google Scholar 

  22. Wang J, Li H, Ren Y, Yao Y, Hu J, Zheng M, Ding Y, Chen YY, Shen Y, Wang LL et al (2018) Local delivery of beta-Elemene improves locomotor functional recovery by alleviating endoplasmic reticulum stress and reducing neuronal apoptosis in rats with spinal cord injury. Cell Physiol Biochem 49:595–609

    Article  CAS  Google Scholar 

  23. de Paula GA, Palmeira VA, Ribeiro TFS, Costa LB, de Sa Rodrigues KE, Simoes ESAC (2020) ACE2/Angiotensin-(1–7)/Mas receptor axis in human cancer: potential role for pediatric tumors. Curr Drug Targets 21:892–901

    Article  Google Scholar 

  24. Feng Y, Wan H, Liu J, Zhang R, Ma Q, Han B, Xiang Y, Che J, Cao H, Fei X et al (2010) The angiotensin-converting enzyme 2 in tumor growth and tumor-associated angiogenesis in non-small cell lung cancer. Oncol Rep 23:941–948

    CAS  PubMed  Google Scholar 

  25. Feng Y, Ni L, Wan H, Fan L, Fei X, Ma Q, Gao B, Xiang Y, Che J, Li Q (2011) Overexpression of ACE2 produces antitumor effects via inhibition of angiogenesis and tumor cell invasion in vivo and in vitro. Oncol Rep 26:1157–1164

    CAS  PubMed  Google Scholar 

  26. Zhang Q, Lu S, Li T, Yu L, Zhang Y, Zeng H, Qian X, Bi J, Lin Y (2019) ACE2 inhibits breast cancer angiogenesis via suppressing the VEGFa/VEGFR2/ERK pathway. J Exp Clin Cancer Res 38:173

    Article  Google Scholar 

  27. Jaszai J, Schmidt MHH (2019) Trends and challenges in tumor anti-angiogenic therapies. Cells 8(9):1102

    Article  CAS  Google Scholar 

  28. Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9:677–684

    Article  CAS  Google Scholar 

  29. Hirota K, Semenza GL (2006) Regulation of angiogenesis by hypoxia-inducible factor 1. Crit Rev Oncol Hematol 59:15–26

    Article  Google Scholar 

  30. Tudisco L, Della Ragione F, Tarallo V, Apicella I, D’Esposito M, Matarazzo MR, De Falco S (2014) Epigenetic control of hypoxia inducible factor-1alpha-dependent expression of placental growth factor in hypoxic conditions. Epigenetics 9:600–610

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Xian.

Ethics declarations

Conflict of interest

All authors have declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wang, Z., Du, C. et al. β-elemene affects angiogenesis of infantile hemangioma by regulating angiotensin-converting enzyme 2 and hypoxia-inducible factor-1 alpha. J Nat Med 75, 655–663 (2021). https://doi.org/10.1007/s11418-021-01516-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-021-01516-y

Keywords

Navigation