Skip to main content
Log in

Anti-inflammatory terpenylated coumarins from the leaves of Zanthoxylum schinifolium with α-glucosidase inhibitory activity

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Nine terpenylated coumarins, namely 7-[(E)-3′,7′-dimethyl-6′-oxo-2′,7′-octadienyl]oxy-coumarin (1), schinilenol (2), schinindiol (3), collinin (4), 7-[(E)-7′-hydroxy-3′,7′-dimethy-locta-2′,5′-dienyloxy]-coumarin (5), 8-methoxyanisocoumarin (6), 7-(6′R-hydroxy-3′,7′-dimethyl-2′E,7′-octadienyloxy)coumarin (7), (E)-4-methyl-6-(coumarin-7′-yloxy)hex-4-enal (8), and aurapten (9), along with a 4-quinolone alkaloid (10) and integrifoliodiol (11), were isolated from the leaves of Zanthoxylum schinifolium. Of the isolates, compounds 4 and 7 potentially inhibited NO production in lipopolysaccharide (LPS)-stimulated macrophage RAW264.7 cells, with IC50 values of 5.9 ± 0.8 and 18.2 ± 1.8 μM, respectively. Furthermore, compounds 4 and 7 dose-dependently reduced the LPS-induced iNOS expression. Moreover, pre-incubation of cells with 4 and 7 significantly suppressed LPS-induced COX-2 protein expression. In addition, compounds 4, 7, 8, and 10 showed strong α-glucosidase inhibitory effects, with IC50 values of 92.1 ± 0.7, 90.6 ± 0.9, 78.2 ± 0.2, and 82.4 ± 0.8 μM, respectively. Compounds 1, 5, and 11 displayed moderate effects with IC50 values of 161.6 ± 0.3, 164.4 ± 1.1, and 155.4 ± 0.9 μM, while acarbose, a positive control, possessed an IC50 value of 121.5 ± 1.0 μM. This is the first investigation on the α-glucosidase inhibitory effect of components from Zanthoxylum schinifolium. Further studies should be made on active compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Schottenfeld D, Beebe-Dimmer J (2006) Chronic inflammation: a common and important factor in the pathogenesis of neoplasia. CA Cancer J Clin 56:69–83

    Article  PubMed  Google Scholar 

  2. Yoon T, Cheon MS, Lee AY, Lee DY, Moon BC, Chun JM (2010) Anti-inflammatory activity of methylene chloride fraction from Glehnia littoralis extract via suppression of NF-kappa B and mitogen-activated protein kinase activity. J Pharmacol Sci 112:46–55

    Article  CAS  PubMed  Google Scholar 

  3. Kanwar JR, Kanwar RK, Burrow H, Baratchi S (2009) Recent advances on the roles of NO in cancer and chronic inflammatory disorders. Curr Med Chem 16:2373–2394

    Article  CAS  PubMed  Google Scholar 

  4. Vuolteenaho K, Moilanen T, Knowles RG, Moilanen E (2007) The role of nitric oxide in osteoarthritis. Scand J Rheumatol 36:247–258

    Article  CAS  PubMed  Google Scholar 

  5. Groves JT, Wang CC (2000) Nitric oxide synthase: models and mechanisms. Curr Opin Chem Biol 4:687–695

    Article  CAS  PubMed  Google Scholar 

  6. Farrell AJ, Blake DR, Palmer RM, Moncada S (1992) Increased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases. Ann Rheum Dis 51:1219–1222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Paik SY, Koh KH, Baek SM, Paek SH, Kim JA (2005) The essential oils from Zanthoxylum schinifolium pericarp induce apoptosis of HepG2 human hepatoma cells through increased production of reactive oxygen species. Biol Pharm Bull 28:802–807

    Article  CAS  PubMed  Google Scholar 

  8. Kim DS, Bang W, Yeum DM (1987) Degradation of carcinogenic nitrosamine formation factor by natural food components. Nitrite-scavenging of vegetable extracts. Bull Korean Fish Soc 20:463–468

    CAS  Google Scholar 

  9. Liu ZL, Chu SS, Jiang GH (2009) Feeding deterrents from Zanthoxylum schinifolium against two stored product insects. J Agric Food Chem 57:10130–10133

    Article  CAS  PubMed  Google Scholar 

  10. Han MK, Kim SI, Ahn YJ (2006) Insecticidal and antifeedant activities of medicinal plant extracts against Attagenus unicolor japonicas (Coleoptera: Dermestidae). J Stored Prod Res 42:15–22

    Article  Google Scholar 

  11. Liu SL, Wei LX, Wang D, Gao CY (1991) Studies on the chemical constituents from the peel of Zanthoxylum schinifolium Sieb et Zucc. Yao Xue Xue Bao 26:836–840

    CAS  PubMed  Google Scholar 

  12. Mun SI, Ryu HS, Lee HJ, Choi JS (1994) Further screening for antioxidant activity of vegetable plants and its active principles from Zanthoxylum schinifolium. J Korean Soc Food Nutr 23:466–471

    CAS  Google Scholar 

  13. Jo YS, Huong DTL, Bae KW, Lee MK, Kim YH (2002) Monoamine oxidase inhibitory coumarin from Zanthoxylum schinifolium. Planta Med 68:84–85

    Article  CAS  PubMed  Google Scholar 

  14. Kim JS, Jun DY, Woo MH, Rhee IK, Kim YH (2006) Chemical composition and antitumor apoptogenic activity of methylene chloride extracts from the leaves of Zanthoxylum schinifolium. J Life Sci 16:546–554

    Article  Google Scholar 

  15. Min BK, Hyun DG, Jeong SY, Kim YH, Ma ES, Woo MH (2011) A new cytotoxic coumarin, 7-[(E)-3′,7′-dimethyl-6′-oxo-2′,7′-octadienyl] oxy coumarin, from the leaves of Zanthoxylum schinifolium. Arch Pharm Res 34:723–726

    Article  CAS  PubMed  Google Scholar 

  16. Chen IS, Lin YC, Tsai IL, Teng CM, Ko FN, Ishikawa T, Ishii H (1995) Coumarins and anti-platelet aggregation constituents from Zanthoxylum schinifolium. Phytochemistry 39:1091–1097

    Article  CAS  PubMed  Google Scholar 

  17. Fang Z, Jun DY, Kim YH, Min BS, Kim AK, Woo MH (2010) Cytotoxic constituents from the leaves of Zanthoxylum schinifolium. Bull Korean Chem Soc 31(4):1081–1084

    Article  CAS  Google Scholar 

  18. Liu ZL, Chu SS, Jiang GH (2009) Feeding deterrents from Zanthoxylum schinifolium against two stored-product insects. J Agric Chem 57:10130–10133

    Article  CAS  Google Scholar 

  19. Kim DH, Shin EK, Kim YH, Lee BW, Jun J-G, Park JHY, Kim J-K (2009) Suppression of inflammatory responses by celastrol, a quinone methide triterpenoid isolated from Celastrus regelii. Eur J Clin Invest 39:819–827

    Article  CAS  PubMed  Google Scholar 

  20. Frandsen T, Svensson B (1998) Plant α-glucosidases of the glycoside hydrolase family 31. Molecular properties, substrate specificity, reaction mechanism, and comparison with family members of different origin. Plant Mol Biol 37:1–13

    Article  CAS  PubMed  Google Scholar 

  21. Bertozzi CR, Kiessling LL (2001) Chemical glycobiology. Science 291:2357–2364

    Article  CAS  PubMed  Google Scholar 

  22. Taha M, Ismail NH, Imran S, Rokei MQ, Saad SM, Khan KM (2015) Synthesis of new oxadiazole derivatives as α-glucosidase inhibitors. Bioorg Med Chem 23(15):4155–4162

    Article  CAS  PubMed  Google Scholar 

  23. Chang CT, Doong SL, Tsai IL, Chen IS (1997) Coumarins and anti-HBV constituents from Zanthoxylum schinifolium. Phytochemistry 45:1419–1422

    Article  CAS  Google Scholar 

  24. Kohno H, Suzuki R, Curini M, Epifano F, Maltese F, Gonzales SP, Tanaka T (2006) Dietary administration with prenyloxycoumarins, auraptene and collinin, inhibits colitis-related colon carcinogenesis in mice. Int J Cancer 118:2936–2942

    Article  CAS  PubMed  Google Scholar 

  25. Min BK, Hyun DG, Jeong SY, Kim YH, Ma ES, Woo MH (2011) A new cytotoxic coumarin, 7-[(E)-3′,7′-dimethyl-6′-oxo-2′,7′-octadienyl] oxy coumarin, from the leaves of Zanthoxylum schinifolium. Arch Pharm Res 34:723–726

    Article  CAS  PubMed  Google Scholar 

  26. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126:131–138

    Article  CAS  PubMed  Google Scholar 

  27. Shin CY, Kundel M, Wells DG (2004) Rapid, activity-induced increase in tissue plasminogen activator is mediated by metabotropic glutamate receptor-dependent mRNA translation. J Neurosci 24:9425–9433

    Article  CAS  PubMed  Google Scholar 

  28. Lee SC, Kim SY, Jeong SM, Park JH (2006) Effect of far-infrared irradiation on catechins and nitrite scavenging activity of green tea. J Agric Food Chem 54:399–403

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the research grants funded by the Catholic University of Daegu in 2013. The authors are grateful to S.H. Kim and collaborators at the Korea Basic Science Institute (Daegu) for measuring the mass spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi Hee Woo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, PH., Zhao, B.T., Kim, O. et al. Anti-inflammatory terpenylated coumarins from the leaves of Zanthoxylum schinifolium with α-glucosidase inhibitory activity. J Nat Med 70, 276–281 (2016). https://doi.org/10.1007/s11418-015-0957-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-015-0957-x

Keywords

Navigation