Skip to main content

Advertisement

Log in

Early colonization of constructed Technosols by macro-invertebrates

  • SUITMA 9: Urbanization — Challenges and Opportunities for Soil Functions and Ecosystem Services
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Anthropogenic activities lead to soil degradation and loss of biodiversity, but also contribute to the creation of novel ecosystems. Pedological engineering aims at constructing Technosols with wastes and by-products to reclaim derelict sites and to restore physico-chemical functions.

Materials and methods

The biological (dynamics of soil and epigeic macroinvertebrate assemblages) and physical (chemical and physical fertility) properties have been studied in two constructed Technosols under grassland during 4 years after their implementation.

Results and discussion

The soils exhibited a moderate chemical fertility (high organic matter and calcium carbonate contents, low nitrogen content) and a good physical fertility that only slightly evolved over the monitored period. Macro-invertebrates have colonized these soils. This colonization was characterized by an increasing number of individuals and species over time. The diversity and abundance values fell within those quoted in the literature for similar natural soils. Epigeic invertebrates presented a succession, indirectly linked to changes in soil parameters. No succession was recorded for soil invertebrates. However, the proportion of soil detritivores, an important functional group for soil evolution, grew consistently. Questions about soil invertebrates’ functional complementarity/redundancy emerge in such artificially created ecosystem.

Conclusions

The constructed Technosol, on which a meadow was sown and well-established after 4 years, can host numerous soil invertebrates. In addition, an increase in diversity was monitored throughout the duration of the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Briones MJI (2014) Soil fauna and soil functions: a jigsaw puzzle. Front Environ Sci 2. https://doi.org/10.3389/fenvs.2014.00007

  • Butt KR, Lowe CN, Frederickson J, Moffat AJ (2004) The development of sustainable earthworm populations at Calvert landfill site, UK. Land Degrad Dev 15:27–36

    Article  Google Scholar 

  • Chao A, Gotelli N, Hsieh TC, Sander EL, He MK, Colwell RK, Ellison AM (2014) Rarefaction and extrapolation with hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67

    Article  Google Scholar 

  • Darmendrail D, Baize D, Barbier J, Freyssinet P, Mouvet C, Salpéteur I, Wavrer P (2000) Fonds géochimiques naturel : Etat des connaissances à l’échelle nationale. BRGM/RP-50158-FR; pp 93

  • de Araújo ASF, Eisenhauer N, Nunes LAPL, Leite LFC, Cesarz S (2015) Soil surface-active fauna in degraded and restored lands of Northeast Brazil. Land Degrad Dev 26:1–8

    Article  Google Scholar 

  • De Jong Y, Verbeek M, Michelsen V, Bjørn P. de P, Los W, Steeman F, … Penev L (2014) Fauna Europaea – all European animal species on the web. Biodiversity Data Journal, (2), e4034. Advance online publication. https://doi.org/10.3897/BDJ.2.e4034

  • De Kimpe C, Morel JL (2000) Urban soils management: a growing concern. Soil Sci Soc Am J 165:31–40

    Article  Google Scholar 

  • Decaëns T, Margerie P, Renault J, Bureau F, Aubert M, Hedde M (2011) Niche overlap and species assemblage dynamics in an ageing pasture gradient in North-Western France. Acta Oecol 37:212–219

    Article  Google Scholar 

  • Deeb M, Grimaldi M, Lerch TZ, Pando A, Podwojewski P, Blouin M (2016) Influence of organic matter content on hydro-structural properties of constructed Technosols. Pedosphere 26:486–498

    Article  Google Scholar 

  • Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Software 22:1–20

    Article  Google Scholar 

  • Frouz J, Keplin B, Pižl V, Tajovský K, Starý J, Lukešová A, Nováková A, Balı́k V, Háněl L, Materna J, Düker C, Chalupský J, Rusek J, Heinkele T (2001) Soil biota and upper soil layer development in two contrasting post-mining chronosequences. Ecol Eng 17:275–284

    Article  Google Scholar 

  • Garnier E, Cortez J, Billes G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecol Lett 85:2630–2637

    Article  Google Scholar 

  • Gleason HA (1917) The structure and development of the plant association. Bull Torrey Bot Club 44:463–481

    Article  Google Scholar 

  • Gotelli NJ, Chao A (2013) Measuring and estimating species richness, species diversity, and biotic similarity from sampling data. In: Levin SA (ed) Encyclopedia of biodiversity. Academic Press, Waltham. https://doi.org/10.1016/b978-0-12-384719-5.00424-x

    Chapter  Google Scholar 

  • Grosbellet C, Vidal-Beaudet L, Caubel V, Charpentier S (2011) Improvement of soil structure formation by degradation of coarse organic matter. Geoderma 162:27–38

    Article  CAS  Google Scholar 

  • Hafeez F, Martin-Laurent F, Béguet J, Bru D, Cortet J, Schwartz C, Morel JL, Philippot L (2012) Taxonomic and functional characterization of microbial communities in Technosols constructed for remediation of a contaminated industrial wasteland. J Soils Sediments 12:1396–1406

    Article  CAS  Google Scholar 

  • Hedde M, Bureau F, Chauvat M, Decaëns T (2010) Patterns and mechanisms responsible for the relationship between the diversity of litter macro-invertebrates and leaf degradation. Basic Appl Ecol 11:35–44

    Article  Google Scholar 

  • Hedde M, van Oort F, Renouf E, Thénard J, Lamy I (2013) Dynamics of soil fauna after plantation of perennial energy crops on polluted soils. Appl Soil Ecol 66:29–39

    Article  Google Scholar 

  • Heemsbergen DA, Berg MP, Loreau M, van Hal JR, Faber JH, Verhoef HA (2004) Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306:1019–1020

  • Hooper D, Chapin F, Ewel J, Hector A, Inchausti P, Lavorel S, Lawton J, Lodge D, Loreau M, Naeem S, Schmid B, Setala H, Symstad A, Vandermeer J, Wardle D (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • IUSS (2014) World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports vol. 106. FAO, Working Group WRB, Rome, Italy, ISBN: 978-92-5-108369-7

  • Jangorzo NS, Watteau F, Schwartz C (2013) Evolution of the pore structure of constructed Technosols during early pedogenesis quantified by image analysis. Geoderma 207:180–192

    Article  Google Scholar 

  • Jangorzo N, Watteau F, Hajos D, Schwartz C (2014) Nondestructive monitoring of the effect of biological activity on the pedogenesis of a Technosol. J Soils Sediments 15:1705–1715

    Article  CAS  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Lavelle P, Bignell D, Lepage M, Wolters V, Roger P, Ineson P, Heal OW, Dhillion S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–193

    CAS  Google Scholar 

  • Marcon E, Hérault B (2013) entropart, an R package to partition diversity. http://CRAN.R-project.org/package=entropart

  • McArdle B, Anderson M (2001) Fitting multivariate models to community data: a comment on distance based redundancy analysis. Ecol 82:290–297

    Article  Google Scholar 

  • Morel JL, Schwartz C, Florentin L, De Kimpe C (2005) Urban soils. In: Hillel D (ed) Encyclopedia of soils in the environment. Elsevier Ltd, pp 202–208

  • Morel JL, Chenu C, Lorenz K (2015) Ecosystem services provided by soils of urban, industrial, traffic, mining, and military areas (SUITMAs). J Soils Sediments 15:1659–1666

    Article  Google Scholar 

  • NF ISO 10390 (2005) Qualité du sol – Détermination du pH

  • NF ISO 10693 (1995) Soil quality – Determination of carbonate content by volumetric method

  • NF ISO 10694 (1995) Qualité du sol – Dosage du carbone organique et du carbone total après combustion sèche (analyse élémentaire)

  • NF ISO 11263 (1994) Soil quality – Determination of phosphorus by spectrometric determination of phosphorus soluble in sodium hydrogen carbonate solution. ISO, Vernier

  • NF X31-107 (2003) Qualité du sol – Détermination de la distribution granulométrique des particules du sol par la méthode à la pipette

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2011) vegan: community ecology package. pp. URL: http://CRAN.R-project.org/package=vegan

  • Pey B, Cortet J, Watteau F, Cheynier K, Schwartz C (2013) Structure of earthworm burrows related to organic matter of a constructed Technosol. Geoderma 202:103–111

    Article  Google Scholar 

  • Pey B, Cortet J, Capowiez Y, Nahmani J, Watteau F, Schwartz C (2014) Technosol composition affects Lumbricus terrestris surface cast composition and production. Ecol Eng 67:238–247

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D and R Core Team (2016) nlme: linear and nonlinear mixed effects models. R package version 3.1–128, URL: http://CRAN.R-project.org/package=nlme

  • Pižl V (1992) Succession of earthworm populations in abandoned fields. Soil Biol Biochem 24:1623–1628

    Article  Google Scholar 

  • Puga JRL, Abrantes NJC, de Oliveira MJS, Vieira DCS, Faria SR, Gonçalves F, Keizer JJ (2016) Long-term impacts of post-fire mulching on ground-dwelling arthropod communities in a Eucalypt plantation. Land Degrad Dev https://doi.org/10.1002/ldr.2583, 28, 1156, 1162

  • Rokia S, Séré G, Schwartz C, Deeb M, Fournier F, Nehls T, Damas O, Vidal-Beaudet L (2014) Modelling agronomic properties of Technosols constructed with urban wastes. Waste Manag 34:2155–2162

    Article  CAS  Google Scholar 

  • Roubíčková A, Frouz J (2014) Performance of the earthworm Aporrectodea caliginosa on unreclaimed spoil heaps at different successional stages. Eur J Soil Biol 65:57–61

    Article  Google Scholar 

  • Seeber J, Seeber GUH, Kössler W, Langel R, Scheu S, Meyer E (2005) Abundance and trophic structure of macrodecomposers on alpine pastureland (Central Alps, Tyrol): effects of abandonment of pasturing. Pedobiol 49:221–228

    Article  Google Scholar 

  • Séré G, Schwartz C, Ouvrard S, Sauvage C, Renat JC, Morel JL (2008) Soil construction: a first step for ecological reclamation of derelict lands. J Soils Sediments 8:130–136

    Article  CAS  Google Scholar 

  • Séré G, Schwartz C, Ouvrard S, Renat JC, Watteau F, Villemin G, Morel JL (2010) Early pedogenic evolution of constructed Technosols. J Soils Sediments 10:1246–1254

    Article  CAS  Google Scholar 

  • Yilmaz D, Cannavo P, Séré G, Vidal-Beaudet L, Legret M, Damas O, Peyneau P-E (2018) Physical properties of structural soils containing waste materials to achieve urban greening. J Soils Sediments 18:442.255

    Article  CAS  Google Scholar 

  • Zimmer M, Kautz G, Topp W (2005) Do woodlice and earthworms interact synergistically in leaf litter decomposition? Funct Ecol 19:7–16

    Article  Google Scholar 

Download references

Acknowledgements

We thank the students and technical staff of the UMR Ecosys (Ghislaine Delarue, Jean-Pierre Pétraud, Jodie Thénard, Antonine Poitevin, Fabien Abonnel, Estelle Boudon, Sylvain Corbel, Pierre-Antoine Precigout) and of the UMR LSE (Françoise Watteau, Jean-Claude Bégin, Adeline Bouchard, Romain Goudon, Alain Rakoto) units for their help in invertebrate sampling. Thanks to GISFI (Noele Raoult, Cindy Messana, and Lucas Charrois) for the organization of sampling at the Homécourt station of the French Research Center for Soil Pollution and Remediation.

Funding

This project was supported by a GESSOL IV program “Fonctions environnementales des sols et gestion du patrimoine sol” funded by the French Ministry of Ecology in cooperation with the ADEME (CON - 2009 - no. S.6 – 0006653).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mickaël Hedde.

Additional information

Responsible editor: Thomas Nehls

Electronic supplementary material

ESM 1

(DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hedde, M., Nahmani, J., Séré, G. et al. Early colonization of constructed Technosols by macro-invertebrates. J Soils Sediments 19, 3193–3203 (2019). https://doi.org/10.1007/s11368-018-2142-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-018-2142-9

Keywords

Navigation