Skip to main content

Advertisement

Log in

Phytoremediation of soils contaminated by organic compounds: hype, hope and facts

  • Phytoremediation of Polluted Soils: Recent Progress and Developments
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The present opinion paper is focused on the phytoremediation of organic pollutants and is based on the lectures given by the author during the International Congress of Phytoremediation of Polluted Soils, held at Vigo, Spain, 29–30 July 2014. The aim of this position paper is (1) to highlight some progress made within the last few years (after the end of COST Action 859 in October 2009) in the phytoremediation of selected organic pollutants and (2) to suggest new research and approaches, which seem important and promising in the opinion of the author to make this environmentally friendly remediation technique more attractive and more successful.

Results and discussion

Depending on the type of soil to be treated, as well as on the xenobiotic contaminants, their concentration and ageing, different approaches can be considered and are briefly presented with some recent and successful applications, but also highlighting their limitations and needs for future developments: phytoextraction of hydrophobic xenobiotic compounds like polychlorobiphenyls (PCBs), phytodegradation of xenobiotics and its possible impacts on primary and secondary metabolism of the plant and phytostimulation of rhizospheric microorganisms by root exudates for the rhizodegradation of petroleum hydrocarbons.

Outlook

Finally, some promising approaches are suggested for overcoming the bottlenecks and making phytoremediation a reliable, mature and sustainable technology: how to deal with mixed pollution; the potential of endophytic bacteria; possible improvements by soil amendments and co-cropping; validation of laboratory results by field experimentation; evolution of regulations from the total concentration of a pollutant to its bioavailable fraction; and the use of biomass for added-value products, fine chemicals and biofuels in biorefineries or the production of ornamental plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abhilash PC, Powell JR, Singh HB, Singh BK (2012) Plant–microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol 30:416–420

    Article  CAS  Google Scholar 

  • Arora PK, Srivastava A, Singh VP (2010) Application of monooxygenases in dehalogenation, desulphurization, denitrification and hydroxylation of aromatic compounds. J Biorem Biodegrad 1(3):112

    Article  CAS  Google Scholar 

  • Becerra-Castro C, Prieto-Fernandez A, Kidd PS, Weyens N, Rodriguez-Garrido B, Touceda-Gonzalez M, Acea MJ, Vangronsveld J (2013) Improving performance of Cytisus striatus on substrates contaminated with hexachlorocyclohexane (HCH) isomers using bacterial inoculants: developing a phytoremediation strategy. Plant Soil 362:247–260

    Article  CAS  Google Scholar 

  • Bell TH, Joly S, Pitre FE, Yergeau E (2014) Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends Biotechnol 32:271–280

    Article  CAS  Google Scholar 

  • Boonsaner M, Borrirukwisitsak S, Boonsaner A (2011) Phytoremediation of BTEX contaminated soil by Canna x generalis. Ecotoxicol Environ Saf 74:1700–1707

    Article  CAS  Google Scholar 

  • Campbell S, Arakaki AS, Li QX (2009) Phytoremediation of heptachlor and heptachlor epoxide in soil by Cucurbitaceae. Int J Phytoremediation 11:28–38

    Article  CAS  Google Scholar 

  • Chhikara S, Paulose B, White JC, Dhanker OP (2010) Understanding the physiological and molecular mechanism of persistent organic pollutant uptake and detoxification in cucurbit species (zucchini and squash). Environ Sci Technol 44:7295–7301

    Article  CAS  Google Scholar 

  • Chigbo C, Batty L, Bartlett R (2013) Interactions of copper and pyrene on phytoremediation potential of Brassica juncea in copper-pyrene co-contaminated soil. Chemosphere 90:2542–2548

    Article  CAS  Google Scholar 

  • Cook RL, Hesterberg D (2013) Comparison of trees and grasses for rhizoremediation of petroleum hydrocarbons. Int J Phytoremediation 15:844–860

    Article  CAS  Google Scholar 

  • Cook RL, Landmeyer JE, Atkinson B, Messier JP, Nichols EG (2010) Field note: successful establishment of a phytoremediation system at a petroleum hydrocarbon contaminated shallow aquifer: trends, trials, and tribulations. Int J Phytoremediation 12:716–732

    Article  Google Scholar 

  • Cruz-Hernandez A, Tomasini-Campocosio A, Pérez-Flores LJ, Fernandez-Perrino FJ, Gutiérrez-Rojas M (2013) Inoculation of seed-borne fungus in the rhizosphere of Festuca arundinacea promotes hydrocarbon removal and pyrene accumulation in roots. Plant Soil 362:261–270

    Article  CAS  Google Scholar 

  • Dettenmaier EM, Doucette WJ, Bugbee B (2009) Chemical hydrophobicity and uptake by plant roots. Environ Sci Technol 43:324–329

    Article  CAS  Google Scholar 

  • Dixon DP, Skipsey M, Edwards R (2010) Roles for glutathione transferases in plant secondary metabolism. Phytochemistry 71:338–350

    Article  CAS  Google Scholar 

  • Dudasova H, Lukacova L, Murinova S, Dercova K (2012) Effects of plant terpenes on biodegradation of polychlorinated biphenyls (PCBs). Int Biodeterior Biodegrad 69:23–27

    Article  CAS  Google Scholar 

  • Faure M, San Miguel A, Ravanel P, Raveton M (2012) Concentration responses to organochlorines in Phragmites australis. Environ Pollut 164:188–194

    Article  CAS  Google Scholar 

  • Fester T, Giebler J, Wick LY, Schlosser D, Kästner M (2014) Plant-microbe interactions as drivers of ecosystem functions relevant for the biodegradation of organic contaminants. Curr Opin Biotechnol 27:168–175

    Article  CAS  Google Scholar 

  • Ficko SA, Rutter A, Zeeb BA (2011a) Effect of pumpkin root exudates on ex situ polychlorinated biphenyl (PCB) phytoextraction by pumpkin and weed species. Environ Sci Pollut Res 18:1536–1543

    Article  CAS  Google Scholar 

  • Ficko SA, Rutter A, Zeeb BA (2011b) Phytoextraction and uptake patterns of weathered polychlorinated biphenyl-contaminated soils using three perennial weed species. J Environ Qual 40:1870–1877

    Article  CAS  Google Scholar 

  • Gao Y, Collins CD (2009) Uptake pathways of polycyclic aromatic hydrocarbons in white clover. Environ Sci Technol 43:6190–6195

    Article  CAS  Google Scholar 

  • Garvin N, Doucette WJ, White JC (2015) Investigating differences in the root to shoot transfer and xylem sap solubility of organic compounds between zucchini, squash amd soybean using a pressure chamber method. Chemosphere 130:98–102

    Article  CAS  Google Scholar 

  • Gaskin SE, Bentham RH (2010) Rhizoremediation of hydrocarbon contaminated soil using Australian native grasses. Sci Total Environ 408:3683–3688

    Article  CAS  Google Scholar 

  • Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Germaine KJ, Byme J, Liu X, Keohane J, Culhane J, Lally RD, Kiwanuka S, Ryan D, Dowling DN (2015) Ecopiling: a combined phytoremediation and passive biopiling system for remediating hydrocarbon impacted soils at field scale. Front Plant Sci 5:1–6, Article 756

    Article  Google Scholar 

  • Gomes HI (2012) Phytoremediation for bioenergy: challenges and opportunities. Environ Technol Rev 1:59–66

    Article  CAS  Google Scholar 

  • Greenwood SJ, Rutter A, Zeeb BA (2011) The absorption and translocation of polychlorinated biphenyl congeners by Cucurbita pepo ssp pepo. Environ Sci Technol 45:6511–6516

    Article  CAS  Google Scholar 

  • Gurska J, Wang W, Gerhardt KE, Khalid AM, Isherwood DM, Huang XD, Glick BR, Greenberg BM (2009) Three year field test of a plant growth promoting rhizobacteria enhanced phytoremediation system at a land farm for treatment of hydrocarbon waste. Environ Sci Technol 43:4472–4479

    Article  CAS  Google Scholar 

  • Guttiérez-Ginés MJ, Hernandez AJ, Pérez-Leblic MI, Pastor J, Vangronsveld J (2014) Phytoremediation of soils co-contaminated by organic compounds and heavy metals: bioassays with Lupinus luteus L. and associated endophytic bacteria. J Environ Manag 143:197–207

    Article  Google Scholar 

  • Haslmayr HP, Meissner S, Langella F, Baumgarten A, Geletneky J (2014) Establishing best practice for microbially aided phytoremediation. Environ Sci Pollut Res 21:6765–6774

    Article  Google Scholar 

  • Huang H, Yu N, Wang L, Gupta DK, He Z, Wang K, Zhu Z, Yan X, Li T, Yang X (2011) The phytoremediation potential of bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil. Bioresour Technol 102:11034–11038

    Article  CAS  Google Scholar 

  • Husain Q, Husain M, Kulshrestha Y (2009) Remediation and treatment of organopollutants mediated by peroxidases: a review. Crit Rev Biotechnol 29:94–119

    Article  Google Scholar 

  • Inui H, Hirota M, Goto J, Yoshihara R, Kodama N, Matsui T, Yamazaki K, Eun H (2015) Zinc finger protein genes from Cucurbita pepo are promising tools for conferring non-Cucurbitaceae plants with ability to accumulate persistent organic pollutants. Chemosphere 123:48–54

    Article  CAS  Google Scholar 

  • Jacoby RP, Li L, Huang S, Lee CP, Millar HA, Taylor NL (2012) Mitochondrial composition, function and stress response in plants. J Integr Plant Biol 54:887–906

    CAS  Google Scholar 

  • Kabra AN, Khandare RV, Kurade MB, Govindwar SP (2011) Phytoremediation of a sulphonated azo dye Green HE4B by Glandularia pulchella (Sweet) Tronc. (Moss Verbena). Environ Sci Pollut Res 18:1360–1373

    Article  CAS  Google Scholar 

  • Kalinowski T, Halden RU (2012) Can stress enhance phytoremediation of polychlorinated biphenyls? Environ Eng Sci 29:1047–1052

    Article  CAS  Google Scholar 

  • Kang JW (2014) Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnol Lett 36:1129–1139

    Article  CAS  Google Scholar 

  • Khan S, Afzal M, Iqbal S, Khan QM (2013) Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90:1317–1332

    Article  CAS  Google Scholar 

  • Labrou NE, Papageorgiou AC, Pavli O, Flemetakis E (2015) Plant GSTome: structure and functional role in xenome network and plant stress response. Curr Opin Biotechnol 32:186–194

    Article  CAS  Google Scholar 

  • Li H, Liu L, Lin C, Wang S (2011a) Plant uptake and in-soil degradation of PCB-5 under varying cropping conditions. Chemosphere 84:943–949

    Article  CAS  Google Scholar 

  • Li Y, Zhou Q, Wang Y, Xie X (2011b) Fate of tetrabromobisphenol A and hexabromocyclo-dodecane brominated flame retardants in soil and uptake by plants. Chemosphere 82:204–209

    Article  CAS  Google Scholar 

  • Li HY, Wei DQ, Shen M, Zhou ZP (2012) Endophytes and their role in phytoremediation. Fungal Divers 54:11–18

    Article  Google Scholar 

  • Liang Y, Meggo R, Hu D, Schnoor JL, Mattes TE (2014) Enhanced polychlorinated biphenyl removal in a switchgrass rhizosphere by bioaugmentation with Burkholderia xenovorans LB400. Ecol Eng 71:215–222

    Article  Google Scholar 

  • Liu J, Schnoor JL (2008) Uptake and translocation of lesser-chlorinated polychlorinated biphenyls (PCBs) in whole hybrid poplar plants after hydroponic exposure. Chemosphere 73:1608–1616

    Article  CAS  Google Scholar 

  • Lord RA (2015) Reed canarygrass (Phalaris arundinacea) outperforms Miscanthus or willow on marginal soils, brownfields and non-agricultural sites for local, sustainable energy crop production. Biomass Bioenergy 78:110–125

    Article  Google Scholar 

  • Low JE, Whitfield Aslund ML, Rutter A, Zeeb BA (2011) The effects of pruning and nodal adventitious roots on polychlorinated biphenyl uptake by Cucurbita pepo grown in field conditions. Environ Pollut 159:769–775

    Article  CAS  Google Scholar 

  • Lunney AI, Rutter A, Zeeb BA (2010) Effect of organic matter additions on uptake of weathered DDT by Cucurbita pepo ssp. pepo cv: Howden. Int J Phytoremediation 12:404–417

    Article  CAS  Google Scholar 

  • Macci C, Doni S, Peruzzi E, Bardella S, Filippis G, Ceccanti B, Masciandaro G (2013) A real-scale soil phytoremediation. Biodegradation 24:521–538

    Article  CAS  Google Scholar 

  • Macci C, Peruzzi E, Doni S, Iannelli R, Masciandaro G (2015) Ornamental plants for micropollutant removal in wetland systems. Environ Sci Pollut Res 22:2406–2415

    Article  CAS  Google Scholar 

  • Macherius A, Eggen T, Lorenz W, Moeder M, Ondruschka J, Reemtsma T (2012) Metabolization of the bacteriostatic agent triclosan in edible plants and its consequences for plant uptake assessment. Environ Sci Technol 46:19797–10804

    Article  Google Scholar 

  • Mackova M, Prouzova P, Stursa P, Ryslava E, Uhlik O, Beranova K, Rezek J, Kurzawova V, Demnerova K, Macek T (2009) Phyto/rhizoremediation studies using long-term PCB-contaminated soil. Environ Sci Pollut Res 14:817–829

    Article  Google Scholar 

  • Marcacci S, Raveton M, Ravanel P, Schwitzguébel JP (2006) Conjugation of atrazine in vetiver (Chrysopogon zizanioides Nash) grown in hydroponics. Environ Exp Bot 56:205–215

    Article  CAS  Google Scholar 

  • Marchal G, Smith KEC, Mayer P, de Jonge LW, Karlson UG (2014) Impact of soil amendments and the plant rhizosphere on PAH behaviour in soil. Environ Pollut 188:124–131

    Article  CAS  Google Scholar 

  • Mench M, Lepp N, Bert V, Schwitzguébel JP, Gawronski SW, Schröder P, Vangronsveld J (2010) Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859. J Soils Sediments 10:1039–1070

    Article  CAS  Google Scholar 

  • Millar AH, Whelan J, Soole KL, Day DA (2011) Organization and regulation of mitochondrial respiration in plants. Annu Rev Plant Biol 62:79–104

    Article  CAS  Google Scholar 

  • Moubasher HA, Hegazy AK, Mohamed NH, Moustafa YM, Kabiel HF, Hamad AA (2015) Phytoremediation of soils polluted with crude petroleum oil using Bassia scoparia and its associated rhizosphere microorganisms. Int Biodeterior Biodegrad 98:113–120

    Article  CAS  Google Scholar 

  • Musdal Y, Mannervik B (2015) Substrate specificities of two tau class glutathione transferases inducible by 2,4,6-trinitrotoluene in poplar. Biochim Biophys Acta 1850(9):1877–1883

    Article  CAS  Google Scholar 

  • Nichols EG, Cook RL, Landmeyer JE, Atkinson B, Malone DR, Shaw G, Woods L (2014) Phytoremediation of a petroleum-hydrocarbon contaminated shallow aquifer in Elizabeth City, North Carolina, USA. Remediation Spring 2014:29–46

    Article  Google Scholar 

  • Oliveira V, Gomes NCM, Almeida A, Silva AMS, Silva H, Cunha A (2015) Microbe-assisted phytoremediation of hydrocarbons in estuarine environments. Microb Ecol 69:1–12

    Article  CAS  Google Scholar 

  • Ouvrard S, Barnier C, Bauda P, Beguiristain T, Biache C, Bonnard M, Caupert C, Cébron A, Cortet J, Cotelle S, Dazy M, Faure P, Masfaraud JF, Nahmani J, Palais F, Poupin P, Raoult N, Vasseur P, Morel JL, Leyval C (2011) In situ assessment of phytotechnologies for multicontaminated soil management. Int J Phytoremediation 13(S1):245–263

    Article  Google Scholar 

  • Page V, Schwitzguébel JP (2009) Metabolism of sulphonated anthraquinones in rhubarb, maize and celery: the role of cytochromes P450 and peroxidases. Plant Cell Rep 28:1725–1735

    Article  CAS  Google Scholar 

  • Passatore L, Rossetti S, Juwarkar AA, Massacci A (2014) Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): state of knowledge and research perspectives. J Hazard Mater 278:189–202

    Article  CAS  Google Scholar 

  • Phillips LA, Greer CW, Farrell RE, Germida JJ (2012) Plant root exudates impact the hydrocarbon degradation potential of a weathered-hydrocarbon contaminated soil. Appl Soil Ecol 52:56–64

    Article  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443

    Article  Google Scholar 

  • Robinson BH, Anderson CWN, Dickinson NM (2015) Phytoextraction: where’s the action? J Geochem Explor 151:34–40

    Article  CAS  Google Scholar 

  • San Miguel A, Schröder P, Harpaintner R, Gaude T, Ravanel P, Raveton M (2013) Response of phase II detoxification enzymes in Phragmites australis plants exposed to organochlorines. Environ Sci Pollut Res 20:3464–3471

    Article  CAS  Google Scholar 

  • Schertl P, Braun HP (2014) Respiratory electron transfer pathways in plant mitochondria. Frontiers Plant Sci 5, Article 163

  • Schröder P, Lyubenova L, Huber C (2009) Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants? Environ Sci Pollut Res 16:795–804

    Article  Google Scholar 

  • Schwitzguébel JP, Kumpiene J, Comino E, Vanek T (2009) From green to clean: a promising and sustainable approach towards environmental remediation and human health for the 21st century. Agrochimica 53:1–29

    Google Scholar 

  • Schwitzguébel JP, Comino E, Plata N, Khalvati M (2011) Is phytoremediation a sustainable and reliable approach to clean-up contaminated water and soils in Alpine areas? Environ Sci Pollut Res 18:842–856

    Article  Google Scholar 

  • Segura A, Ramos JL (2012) Plant–bacteria interactions in the removal of pollutants. Curr Opin Biotechnol 24:467–473

    Article  Google Scholar 

  • Singer AC, Crowley DE, Thompson IP (2003) Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol 21:123–130

    Article  CAS  Google Scholar 

  • Slater H, Gouin T, Leigh MB (2011) Assessing the potential for rhizoremediation of PCB contaminated soils in northern regions using native tree species. Chemosphere 84:199–206

    Article  CAS  Google Scholar 

  • Ssegane H, Negri MC, Quinn J, Urgun-Demirtas M (2015) Multifunctional landscapes: site characterization and field-scale design to incorporate biomass production into an agricultural system. Biomass Bioen 80:179–190

    Article  Google Scholar 

  • Stitt M, Gibon Y (2014) Why measure enzyme activities in the era of systems biology? Trends Plant Sci 19:256–265

    Article  CAS  Google Scholar 

  • Su ZH, Xu ZS, Peng RH, Tian YS, Zhao W, Han HJ, Yao QH, Wu AZ (2012) Phytoremediation of trichlorophenol by phase II metabolism in transgenic Arabidopsis overexpressing a Populus glucosyltransferase. Environ Sci Technol 46:4016–4024

    Article  CAS  Google Scholar 

  • Tang J, Wang R, Niu X, Zhou Q (2010a) Enhancement of soil petroleum remediation by using a combination of ryegrass (Lolium perenne) and different microorganisms. Soil Tillage Res 110:87–93

    Article  Google Scholar 

  • Tang J, Wang R, Niu X, Wang M, Zhou Q (2010b) Characterization on the rhizoremediation of petroleum contaminated soil as affected by different influencing factors. Biogeosci Discuss 7:4665–4688

    Article  Google Scholar 

  • Técher D, Laval-Gilly P, Henry S, Bennasroune A, Formanek P, Martinez-Chois C, D’Innocenzo M, Muanda F, Dicko A, Rejsek K, Falla J (2011) Contribution of Miscanthus x giganteus root exudates to the biostimulation of PAH degradation: an in vitro study. Sci Total Environ 409:4489–4495

    Article  Google Scholar 

  • Técher D, Laval-Gilly P, Henry S, Bennasroune A, Martinez-Chois C, D’Innocenzo M, Falla J (2012a) Prospects of Miscanthus x giganteus for PAH phytoremediation: a microcosm study. Ind Crop Prod 36:276–281

    Article  Google Scholar 

  • Técher D, Martinez-Chois C, Laval-Gilly P, Henry S, Bennasroune A, D’Innocenzo M, Falla J (2012b) Assessment of Miscanthus x giganteus for rhizoremediation of long term PAH contaminated soils. Appl Soil Ecol 62:42–49

    Article  Google Scholar 

  • Tejeda-Agredano MC, Gallego S, Vila J, Grifoll M, Ortega-Calvo JJ, Cantos M (2013) Influence of the sunflower rhizosphere on the biodegradation of PAHs in soil. Soil Biol Biochem 57:830–840

    Article  CAS  Google Scholar 

  • Toussaint JP, Pham TTM, Barriault D, Sylvestre M (2012) Plant exudates promote PCB degradation by a rhodococcal rhizobacteria. Appl Microbiol Biotechnol 95:1589–1603

    Article  CAS  Google Scholar 

  • Tu C, Teng Y, Luo Y, Sun X, Deng S, Li Z, Liu W, Xu Z (2011) PCB removal, soil enzyme activities, and microbial community structures during the phytoremediation by alfalfa in field soils. J Soils Sediments 11:649–656

    Article  CAS  Google Scholar 

  • Van Aken B, Correa PA, Schnoor JL (2010) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44:2767–2776

    Article  Google Scholar 

  • Van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metals and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Article  Google Scholar 

  • Vigil M, Marey-Pérez MF, Martinez Huerta G, Alvarez Cabal V (2015) Is phytoremediation without biomass valorization sustainable? Comparative LCA of landfilling vs. anaerobic co-digestion. Sci Total Environ 505:844–850

    Article  CAS  Google Scholar 

  • Wang S, Zhang S, Huang H, Zhao M, Lv J (2011) Uptake, translocation and metabolism of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in maize (Zea mays L.). Chemosphere 85:379–385

    Article  CAS  Google Scholar 

  • Wang MC, Chen YT, Chen SH, Chang Chien SW, Sunkara SV (2012a) Phytoremediation of pyrene contaminated soils amended with compost and planted with ryegrass and alfalfa. Chemosphere 87:217–225

    Article  CAS  Google Scholar 

  • Wang K, Zhu Z, Huang H, Li T, He Z, Yang X, Alva A (2012b) Interactive effects of Cd and PAHs on contaminants removal from co-contaminated soil planted with hyperaccumulator plant Sedum alfredii. J Soils Sediments 12:556–564

    Article  CAS  Google Scholar 

  • Wang K, Huang H, Zhu Z, Li T, He Z, Yang X, Alva A (2013) Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis). Int J Phytoremediation 15:283–298

    Article  CAS  Google Scholar 

  • Wang K, Chen XX, Zhu ZQ, Huang HG, Li TQ, Yang X (2014) Dissipation of available benzo(a)pyrene in aging soil co-contaminated with cadmium and pyrene. Environ Sci Pollut Res 21:962–971

    Article  CAS  Google Scholar 

  • Waqas M, Khan S, Qing H, Reid BJ, Chao C (2014) The effects of sewage sludge and sewage sludge biochar on PAHs and potentially toxic element bioaccumulation in Cucumis sativa L. Chemosphere 105:53–61

    Article  CAS  Google Scholar 

  • Weyens N, Croes S, Dupae J, Newman L, van der Lelie D, Carleer R, Vangronsveld J (2010a) Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Environ Pollut 158:2422–2427

    Article  CAS  Google Scholar 

  • Weyens N, Truyens S, Dupae J, Newman L, Taghavi S, van der Lelie D, Carleer R, Vangronsveld J (2010b) Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings. Environ Pollut 158:2915–2919

    Article  CAS  Google Scholar 

  • Whitfield Aslund ML, Zeeb BA, Rutter A, Reimer KJ (2007) In situ phytoextraction of polychlorinated biphenyl – (PCB) contaminated soil. Sci Total Environ 374:1–12

    Article  CAS  Google Scholar 

  • Whitfield Aslund ML, Rutter A, Reimer KJ, Zeeb BA (2008) The effects of repeated planting, planting density, and specific transfer pathways on PCB uptake by Cucurbita pepo grown in field conditions. Sci Total Environ 405:14–25

    Article  CAS  Google Scholar 

  • Wieczorek J, Sienkiewicz S, Pietrzak M, Wieczorek Z (2015) Uptake and phytotoxicity of anthracene and benzo[k]fluoranthene applied to the leaves of celery plants (Apium graveolens var. secalinum L.). Ecotoxicol Environ Safe 115:19–25

    Article  CAS  Google Scholar 

  • Xiao W, Wang H, Li T, Zhu Z, Zhang J, He Z, Yang X (2013) Bioremediation of Cd and carbendazim co-contaminated soil by Cd-hyperaccumulator Sedum alfredii associated with carbendazim-degrading bacterial strains. Environ Sci Pollut Res 20:380–389

    Article  CAS  Google Scholar 

  • Zhang Z, Zhou Q, Peng S, Cai Z (2010) Remediation of petroleum contaminated soils by joint action of Pharbitis nil L. and its microbial community. Sci Total Environ 408:5600–5605

    Article  CAS  Google Scholar 

  • Zurita F, De Andab J, Belmonte MA (2009) Treatment of domestic wastewater and production of commercial flowers in vertical and horizontal subsurface-flo CWs. Ecol Eng 35:861–869

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Schwitzguébel.

Additional information

Responsible editor: Jaume Bech

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwitzguébel, JP. Phytoremediation of soils contaminated by organic compounds: hype, hope and facts. J Soils Sediments 17, 1492–1502 (2017). https://doi.org/10.1007/s11368-015-1253-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-015-1253-9

Keywords

Navigation