Skip to main content
Log in

Applying a GLM-based approach to model the influence of soil properties on the toxicity of phenmedipham to Folsomia candida

  • SOILS, SEC 3 • REMEDIATION AND MANAGEMENT OF CONTAMINATED OR DEGRADED LANDS • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Soil properties are the main explanation to the different toxicities obtained in different soils due to their influence on chemical bioavailability and the test species performance itself. However, most prediction studies are centred on a few soil properties influencing bioavailability, while their direct effects on test species performance are usually neglected. In our study, we develop prediction models for the toxicity values obtained in a set of soils taking into account both the chemical concentration and their soil properties.

Materials and methods

The effects on the avoidance behaviour and on reproduction of the herbicide phenmedipham to the collembolan Folsomia candida is assessed in 12 natural soils and the Organisation for Economic Co-operation and Development (OECD) artificial soil. The toxicity outcomes in different soils are compared and explanatory models are constructed by generalised linear models (GLMs) using phenmedipham concentrations and soil properties.

Results and discussion

At identical phenmedipham concentrations, the effects on reproduction and the avoidance response observed in OECD soil were similar to those observed in natural soils, while effects on survival were clearly lower in this soil. The organic matter and silt content explained differences in the avoidance behaviour in different soils; for reproduction, there was a more complex pattern involving several soil properties.

Conclusions

Our results highlight the need for approaches taking into account all the soil properties as a whole, as a necessary step to improve the prediction of the toxicity of particular chemicals to any particular soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbaspoor M, Streibig JC (2007) Monitoring the efficacy and metabolism of phenylcarbamates in sugar beet and black nightshade by chlorophyll fluorescence parameters. Pest Manag Sci 63:576–585

    Article  CAS  Google Scholar 

  • Amorim MJB, Römbke J, Schallnaß H-J, Soares AMVM (2005a) Effect of soil properties and aging on the toxicity of copper for Enchytraeus albidus, Enchytraeus luxuriousus, and Folsomia candida. Environ Toxicol Chem 24:1875–1885

    Article  CAS  Google Scholar 

  • Amorim MJB, Römbke J, Scheffczyl A, Nogueira AJA, Soares AMVM (2005b) Effects of different soil types on the collembolans Folsomia candida and Hypogastrura assimilis using the herbicide phenmedipham. Arch Environ Contam Toxicol 49:343–352

    Article  CAS  Google Scholar 

  • Amorim MJB, Römbke J, Scheffczyl A, Soares AMVM (2005c) Effect of different soil types on the enchytraeids Enchytraeus albidus and Enchytraeus luxuriosus using the herbicide phenmedipham. Chemosphere 61:1102–1114

    Article  CAS  Google Scholar 

  • Amorim MJB, Römbke J, Soares AMVM (2005d) Avoidance behaviour of Enchytraeus albidus: effects of benomyl, carbendazim, phenmedipham and different soil types. Chemosphere 59:501–510

    Article  CAS  Google Scholar 

  • Bauer C, Römbke J (1997) Factors influencing the toxicity of two pesticides on three lumbricid species in laboratory tests. Soil Biol Biochem 29:70–708

    Article  Google Scholar 

  • Bellinck C, Mayaudon J (1979) Mineralization of phenmediphame and derivatives by Trichoderma viride. Immobilization of residues 14 C. Effects on biological activity and number of germs. Rev Ecol Biol Sol 16:1–7

    CAS  Google Scholar 

  • Bellinck C, Mayaudon J (1983a) Determination of a zymogen microflora degrading phenmedipham in soil. Rev Ecol Biol Sol 20:17–21

    Google Scholar 

  • Bellinck C, Mayaudon J (1983b) Effet de l’acidité sur la minéralisation du phenmediphame dans le sol. Rev Ecol Biol Sol 20:23–28

    CAS  Google Scholar 

  • Bellinck C, Mayaudon J (1983c) Effect of some composts on the mineralization of (14)C-phenmedipham in a fresh meadow soil and the immobilization of the carbon-14 labeled residues. Rev Ecol Biol Sol 20:291–297

    CAS  Google Scholar 

  • Boyd WA, Williams PL (2003) Availability of metals to the nematode Caenorhabditis elegans: toxicity based on total concentrations in soil and extracted fractions. Environ Toxicol Chem 22:1100–1106

    CAS  Google Scholar 

  • Crouau Y, Cazes L (2003) What causes variability in the Folsomia candida reproduction test? Appl Soil Ecol 22:175–180

    Article  Google Scholar 

  • Crouau Y, Tan Tchiam S (2006) Importance of the nature of the dilution soils for the evaluation of toxicity of a polluted soil by a collembolan assay. Appl Soil Ecol 34:280–283

    Article  Google Scholar 

  • Crouau Y, Chenon P, Gisclard C (1999) The use of Folsomia candida (Collembola, Isotomidae) for the bioassay of xenobiotic substances and soil pollutants. Appl Soil Ecol 12:103–111

    Article  Google Scholar 

  • Dayton EA, Basta NT, Payton ME, Bradham KD, Schroder JL, Lanno RP (2006) Evaluating the contribution of soil properties to modifying lead phytoavailability and phytotoxicity. Environ Toxicol Chem 25:719–725

    Article  CAS  Google Scholar 

  • Diogo JB, Natal-da-Luz T, Sousa JP, Vogt C, Nowak C (2007) Tolerance of genetically characterized Folsomia candida strains to phenmedipham exposure. J Soils Sediments 7:388–392

    Article  CAS  Google Scholar 

  • Domene X, Alcañiz JM, Andrés P (2007) Ecotoxicological assessment of organic wastes using the soil collembolan Folsomia candida. Appl Soil Ecol 35:461–472

    Article  Google Scholar 

  • Domene X, Chelinho S, Campana P, Natal-da-Luz T, Alcañiz JM, Andrés P, Römbke J, Sousa P (2011) Influence of soil properties on the performance of Folsomia candida: implications for its use in soil ecotoxicology testing. Env Toxicol Chem 30:1497–1505

    Article  CAS  Google Scholar 

  • EFSA (2009) The usefulness of total concentrations and pore water concentrations of pesticides in soil as metrics for the assessment of ecotoxicological effects. Scientific opinion of the Panel on Plant Protection Products and their Residues (PPR). Question No EFSA-Q-2008-429. EFSA Journal 922:1–90

    Google Scholar 

  • EPA (2005) Reregistration eligibility decision for phenmedipham. United States Environmental Protection Agency. Prevention, pesticides and toxic substances (7508C). EPA 738-R-05-007

  • Fountain MT, Hopkin SP (2004) A comparative study of the effects of metal contamination on collembolan in the field and in the laboratory. Ecotoxicol 13:573–587

    Article  CAS  Google Scholar 

  • Fountain MT, Hopkin SP (2005) Folsomia candida (Collembola): a “standard” soil arthropod. Annu Rev Entomol 50:201–222

    Article  CAS  Google Scholar 

  • Greenslade P, Vaughan GT (2003) A comparison of Collembola species for toxicity testing of Australian soils. Pedobiologia 47:171–179

    Article  CAS  Google Scholar 

  • Højer R, Bayley M, Damgaard CF, Holmstrup M (2001) Stress synergy between drought and a common environmental contaminant: studies with the collembolan Folsomia candida. Glob Change Biol 7:485–494

    Article  Google Scholar 

  • Hund-Rinke K, Wiechering H (2001) Earthworm avoidance test for soil assessment. J Soils Sediments 1:15–20

    Article  CAS  Google Scholar 

  • Idinger J, Coja T, Blümel S (2006) Effects of the benzoxazoid DIMBOA, selected degradation products, and structure-related pesticides on soil organisms. Ecotoxicol Environ Safet 65:1–13

    Article  CAS  Google Scholar 

  • ISO (1999) Soil quality—inhibition of reproduction of Collembola (Folsomia candida) by soil pollutants. International Organization for Standardization, ISO Guideline 11267, Geneva, Switzerland

  • ISO (2007) Soil quality—avoidance test for testing the quality of soils and effects of chemicals on behaviour—part 1: test with earthworms (Eisenia fetida and Eisenia andrei). International Organization for Standardization, Draft Guideline 17512-1, Geneva, Switzerland

  • ISO (2010) Soil quality—avoidance test for determining the quality of soils and effects of chemicals on behaviour—part 2: test with collembolans (Folsomia candida). Draft version, Guideline 17512-2. International Organization for Standardization, Geneva, Switzerland

  • Jänsch S, Amorim M, Römbke J (2005) Identification of the ecological requirements of important terrestrial ecotoxicological test species. Environ Rev 13:51–83

    Article  Google Scholar 

  • Knowles CO, Benezet HJ (1981) Microbial degradation of the carbamate pesticides desmedipham, phenmedipham, promecarb, and propamocarb. Bull Environ Contam Toxicol 25:529–533

    Article  Google Scholar 

  • Kossmann K (1970) Methoden zur Rückstandsbestimmung von Phenmedipham in Pflanzenmaterial. Weed Res 10:340–348

    Article  CAS  Google Scholar 

  • Kuperman RG, Amorim MJB, Römbke J, Lanno R, Checkai RT, Dodard SG, Sunahara GI, Scheffczyk A (2006) Adaptation of the enchytraeid toxicity test for their use with natural soil types. Eur J Soil Biol 42:234–243

    Article  Google Scholar 

  • Laitinen P, Siimes K, Eronen L, Rämö S, Welling L, Oinonen S, Mattsoff L, Ruohonen-Lehto M (2006) Fate of the herbicides glyphosate, glufosinate-ammonium, phenmedipham, ethofumesate and metamitron in two Finnish arable soils. Pest Manag Sci 62:473–491

    Article  CAS  Google Scholar 

  • Lock K, Janssen CR (2001a) Modeling zinc toxicity for terrestrial invertebrates. Environ Toxicol Chem 20:1901–1908

    Article  CAS  Google Scholar 

  • Lock K, Janssen CR (2001b) Cadmium toxicity for terrestrial invertebrates: taking into account soil parameters affecting bioavailability into account. Ecotoxicol 10:315–322

    Article  CAS  Google Scholar 

  • Lock K, Janssen CR (2003) Influence of aging on copper bioavailability in soils. Environ Toxicol Chem 22:1162–1166

    Article  CAS  Google Scholar 

  • Lock K, Janssen CR, De Coen WM (2000) Multivariate test designs to assess the influence of zinc and cadmium bioavailability in soils on the toxicity to Enchytraeus albidus. Environ Toxicol Chem 19:2666–2671

    CAS  Google Scholar 

  • Martikainen E (1996) Toxicity of dimethoate to some animal species in different soil types. Ecotox Environ Safety 33:128–136

    Article  CAS  Google Scholar 

  • Martikainen EAT, Krogh PH (1999) Effects of soil organic matter content and temperature on toxicity of dimethoate to Folsomia fimetaria (Collembola: Isotomidae). Environ Toxicol Chem 18:865–872

    CAS  Google Scholar 

  • Natal-da-Luz T, Ribeiro R, Sousa JP (2004) Avoidance tests with collembolan and earthworms as early screening tools for site-specific assessment of polluted soils. Environ Toxicol Chem 23:2188–2193

    Article  Google Scholar 

  • Natal-da-Luz T, Römbke J, Sousa JP (2008) Avoidance test in site-specific risk assessment—influence of soil properties on the avoidance response of Collembola and earthworms. Environ Toxicol Chem 27:1112–1117

    Article  CAS  Google Scholar 

  • Neher DA (1999) Soil community and ecosystem processes. Agroforest Syst 45:159–185

    Article  Google Scholar 

  • NLM (2012) TOXNET. Toxicology Data Network. National Library of Medicine, Bethesda, USA. Available at: http://toxnet.nlm.nih.gov. Accessed 10 March 2012

  • OECD (1984) Earthworm, acute toxicity tests. Guideline 207. Organization for Economic Co-operation and Development, Paris

    Book  Google Scholar 

  • OECD (2008) Predatory mite (Hypoaspis (Geolaelaps) aculeifer) reproduction test in soil. Guideline 226. Organization for Economic Co-operation and Development, Paris

    Google Scholar 

  • Pedersen MB, Temminghoff EJM, Marinussen MPJC, Elmegaard N, van Gestel CAM (1997) Copper accumulation and fitness of Folsomia candida by pH and soil moisture. Appl Soil Ecol 6:135–146

    Article  Google Scholar 

  • Peijnenburg WJGM, Póstuma L, Zweers PGPC, Baerselman R, de Groot AC, van Veen RPM, Jager T (1999) Prediction of metal bioavailability in Dutch field soils for the Oligochaete Enchytraeus crypticus. Ecotoxicol Environ Safety 43:170–186

    Article  CAS  Google Scholar 

  • Phillips CT, Kuperman RG, Checkai RT (2002) Toxicity of chemical-warfare agent HD to Folsomia candida in different soil types. Eur J Soil Biol 38:281–285

    Article  CAS  Google Scholar 

  • Pohlenz H-D, Boidol W, Schüttke I, Streber WR (1992) Purification and properties of an Arthrobacter oxydans P52 carbamate hydrolase specific for the herbicide phenmedipham and nucleotide sequence of the corresponding gene. J Bacteriol 174:6600–6607

    CAS  Google Scholar 

  • Römbke J, Jänsch S, Junker T, Pohl B, Scheffczyk A, Schallnaß H-J (2006) Improvement of the applicability of ecotoxicological tests with earthworms, springtails and plants for the assessment of metals in natural soils. Environ Toxicol Chem 25:776–787

    Article  Google Scholar 

  • Sandifer RD, Hopkin SP (1996) Effects of pH on the toxicity of cadmium, copper, lead and zinc to Folsomia candida Willem, 1902 (Collembola) in a standard laboratory test system. Chemosphere 33:2475–2486

    Article  CAS  Google Scholar 

  • Seniczak S, Klimek A, Kaczmarek S (1994) The mites (Acari) of an old Scots pine forest polluted by a nitrogen fertilizer factory at Wloclawek (Poland). II: litter/soil fauna. Zoologische Beiträge NF 35:199–216

    Google Scholar 

  • Simini M, Checkai RT, Kuperman RG, Phillips CT, Kolakowski JE, Kurnas CW (2004) Assessing TNT toxicity on soils with contrasting characteristics using soil invertebrate toxicity tests. Report A741334. Edgewood Chemical Biological Center, Aberdeen, USA

  • Smit CE, van Gestel CAM (1998) Effects of soil type, prepercolation, and ageing on bioaccumulation and toxicity of zinc for the springtail Folsomia candida. Environ Toxicol Chem 17:1132–1141

    CAS  Google Scholar 

  • Son J, K-i S, Cho K (2009) Response surface model for predicting chronic toxicity of cadmium to Paronychiurus kimi (Collembola), with a special emphasis on the importance of soil characteristics in the reproduction test. Chemosphere 77:889–894

    Article  CAS  Google Scholar 

  • Sonawane BR, Knowles CO (1971) Phenmedipham and m-aminophenol decomposition in alkaline soil. Bull Environ Contam Toxicol 6:322–327

    Article  CAS  Google Scholar 

  • Spurgeon DJ, Hopkin SP (1995) Extrapolation of the laboratory-based OECD earthworm toxicity test to metal-contaminated field sites. Ecotoxicol 4:190–205

    Article  CAS  Google Scholar 

  • Spurgeon DJ, Hopkin SP (1996) Effects of variations of the organic matter content and pH of soils on the availability and toxicity of zinc to the earthworm Eisenia fetida. Pedobiologia 40:80–96

    CAS  Google Scholar 

  • Tena M, Magallanes R, Garrido R (1982) Soil persistence of selected sugar-beet herbicides and their combinations with lenacil. Weed Res 22:245–249

    Article  CAS  Google Scholar 

  • Van Gestel CAM (1997) Scientific basis for extrapolating results from soil ecotoxicity tests to field conditions and the use of bioassays. In: Van Straalen NM, Løkke H (eds) Ecological risk assessment of contaminants in soils. Chapman and Hall, London, pp 25–50

    Chapter  Google Scholar 

  • Van Gestel CAM, Koolhaas JE (2004) Water-extractability, free ion activity, and pH explain cadmium sorption and toxicity to Folsomia candida (Collembola) in seven soil-pH combinations. Environ Toxicol Chem 23:1822–1833

    Article  Google Scholar 

  • Van Gestel CAM, van Diepen AMF (1997) The influence of soil moisture content on the bioavailability and toxicity of cadmium for Folsomia candida Willem (Collembola: Isotomidae). Ecotoxicol Environ Safety 36:123–132

    Article  Google Scholar 

  • Van Gestel CAM, Van Breemen EM, Baerselman R (1992) Influence of environmental conditions on the growth and reproduction of the earthworm Eisenia andrei in artificial soil substrate. Pedobiologia 36:109–120

    Google Scholar 

  • Van Gestel CAM, Rademaker MCJ, van Straalen NM (1995) Capacity controlling parameters and their impact on metal toxicity. In: Salomons W, Stigliani WM (eds) Biogeodynamics of pollutants in soils and sediments. Springer, New York, pp 171–192

    Google Scholar 

  • Vijver M, Jager T, Posthuma L, Peijnenburg W (2001) Impact of metal pools and soil properties on metal accumulation in Folsomia candida (Collembola). Environ Toxicol Chem 20:712–720

    CAS  Google Scholar 

  • Wauchope RD, Buttler TM, Hornsby AG, Augustijn-Beckers PWM, Burt JP (1992) The SCS/ARS/CES pesticide properties database for environmental decision-making. Rev Environ Contam Toxicol 123:1–156

    Article  CAS  Google Scholar 

  • WSSA (1989) Herbicide handbook of the Weed Science Society of America, 6th edn. Weed Science Society of America, Champaign, pp 208–209

    Google Scholar 

Download references

Acknowledgments

This study was funded by a scientific exchange programme of the Spanish Ministry of Education and Science between Spain and Portugal (Programa de Acciones Integradas Hispano-Lusas, HP2004-0118) and the LODOTOX project of the Spanish Ministry of Science and Technology (AGL2002-03297).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Domene.

Additional information

Responsible editor: Jaco Vangronsveld

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domene, X., Chelinho, S., Campana, P. et al. Applying a GLM-based approach to model the influence of soil properties on the toxicity of phenmedipham to Folsomia candida . J Soils Sediments 12, 888–899 (2012). https://doi.org/10.1007/s11368-012-0502-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-012-0502-4

Keywords

Navigation