Skip to main content
Log in

Are cadmium, lead and mercury concentrations in mosses across Europe primarily determined by atmospheric deposition of these metals?

Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

This study aimed at investigating correlations between heavy metal concentrations in mosses and modelled deposition values as well as other site-specific and regional characteristics to determine which factors primarily affect cadmium, lead and mercury concentrations in mosses. The resulting relationships could potentially be used to enhance the spatial resolution of heavy metal deposition maps across Europe.

Materials and methods

Modelled heavy metal deposition data and data on the concentration of heavy metals in naturally growing mosses were integrated into a geographic information system and analysed by means of bivariate rank correlation analysis and multivariate decision trees. Modelled deposition data were validated annually with deposition measurements at up to 63 EMEP measurement stations within the European Monitoring and Evaluation Programme (EMEP), and mosses were collected at up to 7,000 sites at 5-year intervals between 1990 and 2005.

Results and discussion

Moderate to high correlations were found between cadmium and lead concentrations in mosses and modelled atmospheric deposition of these metals: Spearman rank correlation coefficients were between 0.62 and 0.67, and 0.67 and 0.73 for cadmium and lead, respectively (p < 0.001). Multivariate decision tree analyses showed that cadmium and lead concentrations in mosses were primarily determined by the atmospheric deposition of these metals, followed by emissions of the metals. Low to very low correlations were observed between mercury concentrations in mosses and modelled atmospheric deposition of mercury. According to the multivariate analyses, spatial variations of the mercury concentration in mosses was primarily associated with the sampled moss species and not with the modelled deposition, but regional differences in the atmospheric chemistry of mercury and corresponding interactions with the moss may also be involved.

Conclusions

At least for cadmium and lead, concentrations in mosses are a valuable tool in determining and mapping the spatial variation in atmospheric deposition across Europe at a high spatial resolution. For mercury, more studies are needed to elucidate interactions of different chemical species with the moss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Notes

  1. OECD is one of the world's largest and most reliable sources of comparable statistics and economic and social data. OECD collects data, monitors trends, analyses and forecasts economic developments and researches social changes or evolving patterns in trade, environment, agriculture, technology and taxation.

References

  • Aas W (2006) Data quality 2004, quality assurance and field comparisons. EMEP/CCC report 4/2006

  • Aas W, Breivik K (2008) Heavy metals and POP measurements, 2006. EMEP/CCC-Report 4/2008

  • Aleksander-Kwaterczak U, Helios-Rybicka E (2009) Contaminated sediments as a potential source of Zn, Pb and Cd for river system at the historical metalliferous ore mining and smelting industry area in South Poland. J Soils Sediments 9:13–22

    Article  CAS  Google Scholar 

  • Bealey WJ, Long S, Spurgeon DJ, Leith I, Cape JN (2008) Review and implementation study of biomonitoring for assessment of air quality outcomes. Bristol, Environment Agency, 170 pp. (Science Report SC030175/SR2)

  • Berg T, Steinnes E (1997) Use of mosses (Hylocomium splendens and Pleurozium schreberi) as biomonitors of heavy metal deposition: from relative to absolute values. Environ Pollut 98:61–71

    Article  CAS  Google Scholar 

  • Berg T, Hjellbrekke A, Rühling Å, Steinnes E, Kubin E, Larsen MM, Piispanen J (2003) Absolute deposition maps of heavy metals for the Nordic countries based on moss surveys. Report TemaNord 2003:505. Nordic Council of Ministers, Copenhagen, p 35

  • Berg T, Aspmo K, Steinnes E (2008) Transport of Hg from atmospheric mercury depletion events to the mainland of Norway and its possible influence on Hg deposition. Geophys Res Letters 35:L09802

    Article  Google Scholar 

  • Breiman L, Friedmann JA, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth, Belmont

    Google Scholar 

  • Diehl MS, Beard K (2009) Spatial analysis of atmospheric deposition and terrestrial accumulation of mercury within Acadia National Park. In: Northeastern section—44th annual meeting (22–24 March 2009), session no. 48: GIS applications in geoscience teaching, research and map production. Spatial Information Sciences Engineering, University of Maine, Orono (http://gsa.confex.com/gsa/2009NE/finalprogram/abstract_155805.htm)

  • Ellenberg H, Arndt U, Bretthauer R, Ruthsatz B, Steubing L (1991) Biological monitoring. Signals from the environment. Vieweg, Braunschweig

    Google Scholar 

  • Fergusson JE (1991) The heavy elements: chemistry, environmental impact and health effects. Pergamon, Oxford

    Google Scholar 

  • Fränzle O, Schimming CG (2008) Element fluxes in atmosphere, vegetation and soil. In: Fränzle O, Kappen L, Blume HP, Dierssen K (eds) Ecosystem organization of a complex landscape. Long-term research in the Bornhöved Lake District, Germany. Springer, Berlin

    Google Scholar 

  • Fränzle O, Straškraba M, Jørgensen SE (1995) Ecology and ecotoxicology. Ullmann´s encyclopedia of industrial chemistry, vol B7. VCH, Weinheim, pp 19–154

    Google Scholar 

  • Gauger T, Haenel HD, Rösemann C, Dämmgen U, Bleeker A, Erisman JW, Vermeulen AT, Schaap M, Timmermanns RM A, Builtjes PJH, Duyzer JH (2008) National implementation of the UNECE Convention on Long-range Transboundary Air Pollution (Effects). Part 1: Deposition loads: Methods, modelling and mapping results, trends. BMU/UBA 204 63 252. UBA-Texte 38/08. ISSN 1862-4804

  • Gusev A, Iliyn I, Rozovskaya O, Shatalov V, Sokovych V, Travnikov O (2009) Modelling of heavy metals and persistent organic pollutants: new developments. EMEP/MSC-East Technical Report 1/2009. http://www.msceast.org

  • Hagl S (2008) Schnelleinstieg Statistik—Daten erheben, analysieren, präsentieren. Haufe, Freiburg

    Google Scholar 

  • Harmens H, Mills G, Hayes F, Williams P, De Temmerman L, Pesch R, Schröder W, and other participants of ICP Vegetation (2005) Air pollution and vegetation. ICP Vegetation Annual Report 2004/2005. UNECE ICP Vegetation Coordination Centre, Centre for Ecology and Hydrology, Bangor, UK. Available at http://icpvegetation.ceh.ac.uk. Accessed 18 May 2009

  • Harmens H, Norris D, Pesch R, Schröder W, and other participants of the moss survey (2008) Spatial and temporal trends in heavy metal accumulation in mosses in Europe (1990-2005). Programme Coordination Centre for the ICP Vegetation, Centre for Ecology and Hydrology, Bangor, UK. Available at http://icpvegetation.ceh.ac.uk. Accessed 18 May 2009

  • Harmens H, Mills G, Hayes F, Jones L, Norris D, Cooper D, and the participants of ICP Vegetation (2009) Air pollution and vegetation. ICP Vegetation annual report 2008/2009. ISBN: 978-0-9557672-9-6

  • Hengla T, Heuvelink GBM, Rossiter DG (2007) About regression-kriging: from equations to case studies. Comput Geosci 33(10):1301–1315

    Article  Google Scholar 

  • Herpin U, Siewers U, Markert B, Rosolen V, Breulmann G, Bernoux M (2004) Second German heavy-metal survey by means of mosses, and comparison of the first and second approach in Germany and other European countries. Environ Sci Pollut Res 11:57–66

    Article  CAS  Google Scholar 

  • Hettelingh JP, Posch M, Slootweg J (2008) Critical load, dynamic modelling and impact assessment in Europe: CCE Status Report 2008, Coordination Centre for Effects, Netherlands Environmental Assessment Agency. Available at www.pbl.nl/cce. Accessed 18 May 2009

  • Hornsmann I, Pesch R, Schmidt G, Schröder W (2008) Calculation of an Ecological Land Classification of Europe (ELCE) and its application for optimising environmental monitoring networks. In: Car A, Griesebner G, Strobl J (eds) Geospatial Crossroads @ GI_Forum '08: Proceedings of the Geoinformatics Forum Salzburg. Wichmann, Heidelberg, pp 140–151

    Google Scholar 

  • ICP Vegetation (2005) Heavy metals in European mosses: 2005/2006 survey. Monitoring manual. ICP Vegetation Coordination Centre, Centre for Ecology and Hydrology, Bangor

    Google Scholar 

  • Ilyin I, Travnikov O (2005) Modelling of heavy metal airborne pollution in Europe: evaluation of the model performance. EMEP/MSC-E Technical Report 8/2005. Meteorological Synthesizing Centre-East, Moscow, Russian Federation. http://www.msceast.org

  • Ilyin I, Rozovskaya O, Travnikov O, Aas W, Hettelingh JP, Reinds GJ (2008) Heavy Metals: Transboundary Pollution of the Environment. EMEP Status Report 2/2008. Norwegian Institute for Air Research, Kjeller, Meteorological Synthesizing Centre-East, Moscow, Norwegian Meteorological Institute, Oslo, Coordination Centre for Effects, Bilthoven

  • Iverfeldt Å (1991) Occurrence and turnover of atmospheric mercury over the Nordic countries. Water Air Soil Pollut 56:251–265

    Article  CAS  Google Scholar 

  • Keil M, Kiefl R, Strunz G (2005) CORINE land cover 2000 - Germany. Final Report, German Aerospace Center, German Remote Sensing Data Center, Oberpfaffenhofen

    Google Scholar 

  • Lindberg SE, Turner RR (1988) Factors influencing atmospheric deposition, stream export, and landscape accumulation of trace metals in forested watersheds. Water Air Soil Pollut 39:123–156

    Article  CAS  Google Scholar 

  • Litz HP (2000) Multivariate statistische Methoden. Oldenbourg Wissenschaftsverlag, München

    Google Scholar 

  • Markert B, Wünschmann S, Fränzle S, Wappelhorst O, Weckert V, Breulmann G, Djingova R, Herpin U, Lieth H, Schröder W, Siewers U, Steinnes E, Wolterbeek B, Zechmeister H (2008) On the road from biomonitoring to human health aspects—monitoring atmospheric heavy metal deposition by epiphytic/epigenetic plants: present status and future needs. Int J Environ Poll 32:486–498

    Article  CAS  Google Scholar 

  • Morvan X, Saby NP, Arrouays D, Le Bas C, Jones RJ, Verheijen FG, Bellamy PH, Stephens M, Kibblewhite MG (2008) Soil monitoring in Europe: a review of existing systems and requirements for harmonisation. Sci Total Environ 391:1–12

    Article  CAS  Google Scholar 

  • Mulder C, Breure AM (2006) Impact of heavy metal pollution on plants and leaf-miners. Environ Chem Lett 4:83–86

    Article  CAS  Google Scholar 

  • Norr C, Riepert F (2007) Bioaccumulation studies with Eisenia fetida using an established degradation test system. J Soils Sediments 7:393–397

    Article  CAS  Google Scholar 

  • Odeh IOA, McBratney AB, Chittleborough DJ (1995) Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging. Geoderma 67(3–4):215–226

    Article  Google Scholar 

  • Osborn D, Weeks JM, Hankard P, Dale L (2000) Potential uses of biomonitoring in pollution control—an introductory guide. Environment Agency Technical Report, p 319

  • Pacyna JM, Pacyna EG, Aas W (2009) Changes of emissions and atmospheric deposition of mercury, lead, and cadmium in Europe. Atmos Environ 43:117–127

    Article  CAS  Google Scholar 

  • Pakeman R, Osborn D, Hankard P (2000) Plants as biomonitors of atmospheric pollution: a review of their potential use in integrated pollution control. Environment Agency Technical Report, p 318

  • Pesch R, Schröder W (2009) Long-term monitoring of the metal accumulation in forests measured by use of the moss technique. Europ J Forest Res. doi:10.1007/s10342-009-0298-y

    Google Scholar 

  • Pesch R, Schröder W, Mohr K, Matter Y, Kleppin L, Holy M, Goeritz A, Genßler L (2007) Moos-Monitoring 2005/2006: Schwermetalle IV und Gesamtstickstoff. R&D Project 205 64 200, Final Report, on behalf of the Federal Environment Agency, Dessau

  • Pesch R, Schmidt G, Schröder W, Conrad A, Kolossa-Gehring M, Feigenspahn S, Utermann J (2009) Das Potenzial raumbezogener Daten im Human-Biomonitoring am Beispiel des Kinder-Umwelt-Surveys. In: Strobl J, Blaschke T, Griesebner G (eds) Angewandte Geoinformatik 2009. Wichmann, Heidelberg, pp 248–257

    Google Scholar 

  • Rühling A, Tyler G (1968) An ecological approach to the lead problem. Botaniska Notiser 121:321–343

    Google Scholar 

  • Rühling A, Tyler G (1969) Ecology of heavy metals—a regional and historical study. Botaniska Notiser 121:248–259

    Google Scholar 

  • Rühling A, Tyler G (1970) Sorption and retention of heavy metals in the woodland moss Hylocomium splendens (Hedw.). Br Et Sch Oikos 21:248–342

    Article  Google Scholar 

  • Schöpp W, Amann M, Cofala J, Heyes C, Klimont Z (1999) Integrated assessment of European air pollution emission control strategies. Environ Modell Softw 14:1–9

    Google Scholar 

  • Schroeder WH, Munthe J (1998) Atmospheric mercury—an overview. Atmos Environ 32(5):809–822

    Article  CAS  Google Scholar 

  • Schroeder WH, Anlauf KG, Barrie LA, Lu JY, Steffen A, Schneeberger DR, Berg T (1998) Arctic springtime depletion of mercury. Nature 394:331–332

    Article  CAS  Google Scholar 

  • Schröder W, Pesch R, Schmidt G (2004) Soil monitoring in Germany. Spatial representativity and methodical comparability. J Soils Sediments 4:49–58

    Article  Google Scholar 

  • Schröder W, Pesch R, Englert C, Harmens H, Suchara I, Zechmeister HG, Thöni L, Maňkovská B, Jeran Z, Grodzinska K, Alber R (2008) Metal accumulation in mosses across national boundaries: uncovering and ranking causes of spatial variation. Environ Pollut 151:377–388

    Article  Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics. From air pollution to climate change, 2nd edn. Wiley, Hoboken

  • Simpson D, Fagerli H, Hellsten S, Knulst JC, Westling O (2006) Comparison of modelled and monitored deposition fluxes of sulphur and nitrogen to ICP-forest sites in Europe. Biogeosciences 3:337–355

    Article  CAS  Google Scholar 

  • Slootweg J, Hettelingh JP, Posch M, Dutchak S, Ilyin I (2005) Critical loads of cadmium, lead and mercury in Europe. Coordination Center for Effects and EMEP/MSC-East. Report 259101015/2005, Bilthoven, ISBN 90-6960-119-2

    Google Scholar 

  • Spranger T, Hettelingh JP, Slootweg J, Posch M (2008) Modelling and mapping long-term risks due to reactive nitrogen effects. An overview of LRTAP convention activities. Environ Pollut 154:482–487

    Article  CAS  Google Scholar 

  • Steinnes E, Andersson EM (1991) Atmospheric deposition of mercury in Norway: temporal and spatial trends. Water Air Soil Pollut 56:391–404

    Article  CAS  Google Scholar 

  • Steinnes E, Rühling Å, Lippo H, Mäkinen A (1997) Reference material for large-scale metal deposition surveys. Accredit Qual Assur 2:243–249

    Article  CAS  Google Scholar 

  • Steinnes E, Berg T, Sjøbakk TE (2003) Temporal and spatial trends in Hg deposition monitored by moss analysis. Sci Total Environ 304:215–219

    Article  CAS  Google Scholar 

  • Task Force on Health (2007) Health risks of heavy metals from long-range transboundary air pollution. World Health Organization, Bonn

    Google Scholar 

  • VROM (2007) Heavy metal emissions, depositions, critical loads and exceedances in Europe. In: Hettelingh JP, Sliggers J (eds) Dutch Ministry of Housing, Spatial Planning and the Environment, Directorate for Climate Change and Industry

  • Zechmeister HG, Grodzinska K, Szarek-Lukaszewska G (2003) Bryophytes. In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators & biomonitors—principles, concepts and applications. Elsevier, Amsterdam

    Google Scholar 

  • Zheng YM, Chen TB, He JZ (2008) Multivariate geostatistical analysis of heavy metal in topsoils from Beijing, China. J Soils Sediments 8:51–58

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Pesch.

Additional information

Responsible editor: Nicole Mathers

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schröder, W., Holy, M., Pesch, R. et al. Are cadmium, lead and mercury concentrations in mosses across Europe primarily determined by atmospheric deposition of these metals?. J Soils Sediments 10, 1572–1584 (2010). https://doi.org/10.1007/s11368-010-0254-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-010-0254-y

Keywords

Navigation