Skip to main content
Log in

Towards harmonizing natural resources as an area of protection in life cycle impact assessment

  • CRITICAL REVIEW
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

In this paper, we summarize the discussion and present the findings of an expert group effort under the umbrella of the United Nations Environment Programme (UNEP)/Society of Environmental Toxicology and Chemistry (SETAC) Life Cycle Initiative proposing natural resources as an Area of Protection (AoP) in Life Cycle Impact Assessment (LCIA).

Methods

As a first step, natural resources have been defined for the LCA context with reference to the overall UNEP/SETAC Life Cycle Impact Assessment (LCIA) framework. Second, existing LCIA methods have been reviewed and discussed. The reviewed methods have been evaluated according to the considered type of natural resources and their underlying principles followed (use-to-availability ratios, backup technology approaches, or thermodynamic accounting methods).

Results and discussion

There is currently no single LCIA method available that addresses impacts for all natural resource categories, nor do existing methods and models addressing different natural resource categories do so in a consistent way across categories. Exceptions are exergy and solar energy-related methods, which cover the widest range of resource categories. However, these methods do not link exergy consumption to changes in availability or provisioning capacity of a specific natural resource (e.g., mineral, water, land etc.). So far, there is no agreement in the scientific community on the most relevant type of future resource indicators (depletion, increased energy use or cost due to resource extraction, etc.). To address this challenge, a framework based on the concept of stock/fund/flow resources is proposed to identify, across natural resource categories, whether depletion/dissipation (of stocks and funds) or competition (for flows) is the main relevant aspect.

Conclusions

An LCIA method—or a set of methods—that consistently address all natural resource categories is needed in order to avoid burden shifting from the impact associated with one resource to the impact associated with another resource. This paper is an important basis for a step forward in the direction of consistently integrating the various natural resources as an Area of Protection into LCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alvarenga RAF, Dewulf J, Van Langenhove H, Huijbregts MAJ (2013) Exergy-based accounting for land as a natural resource in life cycle assessment. Int J Life Cycle Assess 18:939–947

    Article  Google Scholar 

  • Alvarenga RAF, Erb K-H, Haberl H et al (2015) Global land use impacts on biomass production—a spatial-differentiated resource-related life cycle impact assessment method. Int J Life Cycle Assess 20:440–450

    Article  Google Scholar 

  • Bare J (2011) TRACI 2.0: the tool for the reduction and assessment of chemical and other environmental impacts 2.0. Clean Techn Environ Policy 13:687–696

    Article  CAS  Google Scholar 

  • Bare J, Norris GA, Pennington DW (2003) TRACI-the tool for the reduction and assessment of chemical and other environmental impacts. J Ind Ecol 6:49–78

    Article  Google Scholar 

  • Bayart J-B, Bulle C, Deschênes L et al (2010) A framework for assessing off-stream freshwater use in LCA. Int J Life Cycle Assess 15:439–453

    Article  CAS  Google Scholar 

  • Bayart J-B, Worbe S, Grimaud J, Aoustin E (2014) The Water Impact Index: a simplified single-indicator approach for water footprinting. Int J Life Cycle Assess 19:1336–1344

    Article  Google Scholar 

  • Beck T, Bos U, Wittstock B et al (2010) LANCA ® land use indicator value calculation in life cycle assessment. Fraunhofer Verlag, Stuttgart

    Google Scholar 

  • Berger M, van der Ent R, Eisner S et al (2014) Water accounting and vulnerability evaluation (WAVE): considering atmospheric evaporation recycling and the risk of freshwater depletion in water footprinting. Environ Sci Technol 48:4521–4528

    Article  CAS  Google Scholar 

  • Bjørn A, Hauschild MZ (2015) Introducing carrying capacity based normalization in LCA: framework and development of references at midpoint level. Int J Life Cycle Assess 20:1005–1018

    Article  Google Scholar 

  • Borucke M, Moore D, Cranston G et al (2013) Accounting for demand and supply of the biosphere’s regenerative capacity: the National Footprint Accounts’ underlying methodology and framework. Ecol Indic 24:518–533

    Article  Google Scholar 

  • Bos U, Horn R, Beck T (2016) LANCA ® characterization factors for life cycle impact assessment-version 2.0. Fraunhofer Verlag, Stuttgart

    Google Scholar 

  • Bösch ME, Hellweg S, Huijbregts MAJ, Frischknecht R (2007) Applying cumulative exergy demand (CExD) indicators to the ecoinvent database. Int J Life Cycle Assess 12:181–190

    Article  Google Scholar 

  • Boulay A-M, Bulle C, Bayart J-B et al (2011) Regional characterization of freshwater use in LCA: modeling direct impacts on human health. Environ Sci Technol 45:8948–8957

    Article  CAS  Google Scholar 

  • Boulay A-M, Motoshita M, Pfister S et al (2015a) Analysis of water use impact assessment methods (Part A): Evaluation of modeling choices based 15 on a quantitative comparison of scarcity and human health indicators. Int J Life Cycle Assess 20:139–160. doi:10.1007/s11367-014-0814-2

  • Boulay A-M, Bare J, De Camillis C et al (2015b) Consensus building on the development of a stress-based indicator for LCA-based impact assessment of water consumption: outcome of the expert workshops. Int J Life Cycle Assess 20:577–583

    Article  CAS  Google Scholar 

  • Brandão M, Milà i Canals L (2013) Global characterisation factors to assess land use impacts on biotic production. Int J Life Cycle Assess 18:1243–1252

    Article  Google Scholar 

  • Cowell SJ, Clift R (2000) A methodology for assessing soil quantity and quality in life cycle assessment. J Clean Prod 8:321–331

    Article  Google Scholar 

  • Crowson P (2012) Some observations on copper yields and ore grades. Resour Policy 37:59–72

    Article  Google Scholar 

  • Dewulf J, Boesch ME, De Meester B et al (2007) Cumulative exergy extraction from the naural environment (CEENE): a comprehensive life cycle impact assessment method for resource accounting. Environ Sci Technol 41:8477–8483

    Article  CAS  Google Scholar 

  • Dewulf J, Benini L, Mancini L et al (2015a) Rethinking the area of protection “natural resources” in life cycle assessment. Environ Sci Technol 49:5310–5317

    Article  CAS  Google Scholar 

  • Dewulf J, Mancini L, Blengini GA et al (2015b) Toward an overall analytical framework for the integrated sustainability assessment of the production and supply of raw materials and primary energy carriers. J Ind Ecol 19:963–977

    Article  Google Scholar 

  • Drielsma JA, Russell-Vaccari AJ, Drnek T et al (2016) Mineral resources in life cycle impact assessment—defining the path forward. Int J Life Cycle Assess 21:85–105. doi:10.1007/s11367-015-0991-7

    Article  Google Scholar 

  • EC (2006) Establishing a framework for the protection of soil and amending directive 2004/35/EC. European Commission, Brussels

    Google Scholar 

  • EC (2012) The implementation of the soil thematic strategy and ongoing activities. European Commission, Brussels

    Google Scholar 

  • EC (2015) Soil. http://ec.europa.eu/environment/soil/index_en.htm. Accessed 18 Feb 2016

  • EC-JRC (2010) International reference life cycle data system (ILCD) handbook: framework and requirements for life cycle impact assessment models and indicators. European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra

    Google Scholar 

  • EC-JRC (2011) International reference life cycle data system (ILCD) handbook: recommendations for life cycle impact assessment in the European context. European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra

    Google Scholar 

  • Ecoinvent (2015) Activity Overview for ecoinvent 3.2, Undefined. http://www.ecoinvent.org/support/documents-and-files/documents-and-files.html. Accessed 1 Feb 2015

  • EEX (2016) Mining. http://eex.gov.au/industry-sectors/mining/. Accessed 17 Mar 2016

  • Emanuelsson A, Ziegler F, Pihl L et al (2014) Accounting for overfishing in life cycle assessment: new impact categories for biotic resource use. Int J Life Cycle Assess 19:1156–1168

    Article  Google Scholar 

  • Finnveden G (2005) The resource debate needs to continue. Int J Life Cycle Assess 10:372

    Article  Google Scholar 

  • Finnveden G, Hauschild MZ, Ekvall T et al (2009) Recent developments in Life Cycle Assessment. J Environ Manag 91:1–21

    Article  Google Scholar 

  • Fischer-Kowalski M, Swilling M (2011) Decoupling natural resource use and environmental impacts from economic growth. United Nations Environment Programme (UNEP)

  • Frischknecht R (2010) LCI modelling approaches applied on recycling of materials in view of environmental sustainability, risk perception and eco-efficiency. Int J Life Cycle Assess 15:666–671

    Article  CAS  Google Scholar 

  • Frischknecht R, Büsser Knöpfel S (2013) Swiss eco-factors 2013 according to the ecological scarcity method. Methodological fundamentals and their application in Switzerland. Federal Office for the Environment FOEN, Bern

    Google Scholar 

  • Frischknecht R, Jolliet O (2016) Global guidance for life cycle impact assessment indicators: volume 1. UNEP/SETAC Life Cycle Initiative, Paris

    Google Scholar 

  • Frischknecht R, Jungbluth N, Althaus H et al (2007) Overview and Methodology. Ecoinvent Report No. 1. Swiss Centre for Life Cycle Inventories, Dübendorf

  • Garrigues E, Corson MS, Angers DA et al (2012) Soil quality in life cycle assessment: towards development of an indicator. Ecol Indic 18:434–442

    Article  CAS  Google Scholar 

  • Garrigues E, Corson MS, Angers DA et al (2013) Development of a soil compaction indicator in life cycle assessment. Int J Life Cycle Assess 18:1316–1324

    Article  Google Scholar 

  • Gerst MD (2008) Revisiting the cumulative grade-tonnage relationship for major copper ore types. Econ Geol 103:615–628

    Article  CAS  Google Scholar 

  • Goedkoop M, Spriensma R (2001) The eco-indicator 99 a damage oriented method for life cycle impact assessment-methodology report. Ministerie van VROM, Den Haag

    Google Scholar 

  • Goedkoop M, Heijungs R, de Schryver A et al (2013) ReCiPe 2008. A LCIA method which comprises harmonised category indicators at the midpoint and the endpoint level. Characterisation. Ministerie van VROM, Den Haag

  • Guinée JB, Heijungs R (1995) A proposal for the definition of resource equivalency factors for use in product life-cycle assessment. Environ Toxicol Chem 14:917–925

    Article  Google Scholar 

  • Hauschild MZ, Huijbregts MAJ (eds) (2015) Life cycle impact assessment. Springer, Dordrecht

    Google Scholar 

  • Hauschild MZ, Goedkoop M, Guinée J et al (2013) Identifying best existing practice for characterization modeling in life cycle impact assessment. Int J Life Cycle Assess 18:683–697

    Article  CAS  Google Scholar 

  • Heijungs R, Guinée J, Huppes G (1997) Impact categories for natural resources and land use. Centre of Environmental Science (CML), Leiden

    Google Scholar 

  • Hoekstra AY, Mekonnen MM, Chapagain AK et al (2012) Global monthly water scarcity: blue water footprints versus blue water availability. PLoS One. doi:10.1371/journal.pone.0032688

    Google Scholar 

  • Huijbregts MAJ, Hellweg S, Frischknecht R et al (2010) Cumulative energy demand as predictor for the environmental burden of commodity production. Environ Sci Technol 44:2189–2196

    Article  CAS  Google Scholar 

  • ISO (2006) ISO 14040: environmental management - life cycle assessment - principles and framework. International Organisation for Standardisation, Geneva

    Google Scholar 

  • Itsubo N, Inaba A (2012) Lime2. JLCA Newsl Life-Cycle Assess Soc Japan 16

  • Itsubo N, Sakagami M, Washida T et al (2004) Weighting across safeguard subjects for LCIA through the application of conjoint analysis. Int J Life Cycle Assess 9:196–205

    Article  CAS  Google Scholar 

  • Jolliet O, Margni M, Charles R et al (2003) IMPACT 2002 +: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8:324–330

    Article  Google Scholar 

  • Jolliet O, Müller-Wenk R, Bare J et al (2004) The LCIA midpoint-damage framework of the UNEP/SETAC life cycle initiative. Int J Life Cycle Assess 9:394–404

    Article  Google Scholar 

  • Klinglmair M, Sala S, Brandão M (2014) Assessing resource depletion in LCA: a review of methods and methodological issues. Int J Life Cycle Assess 19:580–592

    Article  Google Scholar 

  • Koellner T, de Baan L, Beck T et al (2013) UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. Int J Life Cycle Assess 18:1185–1187

    Article  Google Scholar 

  • Kounina A, Margni M, Bayart J-B et al (2013) Review of methods addressing freshwater use in life cycle inventory and impact assessment. Int J Life Cycle Assess 18:707–721

    Article  CAS  Google Scholar 

  • Langlois J, Fréon P, Delgenes J-P et al (2014) New methods for impact assessment of biotic-resource depletion in life cycle assessment of fisheries: theory and application. J Clean Prod 73:63–71

    Article  Google Scholar 

  • Lindeijer E, Müller-Wenk R, Steen B (2002) Impact assessment of resources and land use. In: Udo de Haes HA, Finnveden G, Goedkoop M et al (eds) Life-cycle impact assessment: striving towards best practice. Society of Environmental Toxicology and Chemistry (SETAC), Pensacola, pp 11–64

    Google Scholar 

  • Mancini L, De Camillis C, Pennington D (2013) Security of supply and scarcity of raw materials. doi: 10.2788/94926. Publications Office of the European Union, Luxembourg

  • McGlade C, Ekins P (2015) The geographical distribution of fossil fuels unused when limiting global warming to 2 °C. Nature 517:187–190

    Article  CAS  Google Scholar 

  • Milà i Canals L, Bauer C, Depestele J et al (2007a) Key elements in a framework for land use impact assessment within LCA. Int J Life Cycle Assess 12:5–15

    Article  Google Scholar 

  • Milà i Canals L, Romanyà J, Cowell SJ (2007b) Method for assessing impacts on life support functions (LSF) related to the use of “fertile land” in life cycle assessment (LCA). J Clean Prod 15:1426–1440

    Article  Google Scholar 

  • Milà i Canals L, Chenoweth J, Chapagain A et al (2009) Assessing freshwater use impacts in LCA: part I - inventory modelling and characterisation factors for the main impact pathways. Int J Life Cycle Assess 14:28–42

    Article  Google Scholar 

  • Mudd GM (2009) Historical trends in base metal mining: backcasting to understand the sustainability of mining. In: Canadian Metallurgical Society (ed) 48th Annual Conference of Metallurgists proceedings. Sudbury, Ontario, Canada

  • Mudd GM, Jowitt SM (2014) A detailed assessment of global nickel resource trends and endowments. Econ Geol 109:1813–1841

    Article  CAS  Google Scholar 

  • Mudd GM, Ward JD (2008) Will Sustainability Constraints Cause “Peak Minerals”? In: 3rd International Conference on Sustainability Engineering & Science: Blueprints for Sustainable Infrastructure. Auckland, New Zealand

  • Northey S, Mohr S, Mudd GM et al (2014) Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resour Conserv Recycl 83:190–201

    Article  Google Scholar 

  • Núñez M, Civit B, Muñoz P et al (2010) Assessing potential desertification environmental impact in life cycle assessment. Int J Life Cycle Assess 15:67–78

    Article  Google Scholar 

  • Núñez M, Antón A, Muñoz P, Rieradevall J (2013) Inclusion of soil erosion impacts in life cycle assessment on a global scale: application to energy crops in Spain. Int J Life Cycle Assess 18:755–767

    Article  Google Scholar 

  • Oberholzer H-R, Weisskopf P, Gaillard G et al (2006) Methode zur Beurteilung der Wirkungen landwirtschaftlicher Bewirtschaftung auf die Bodenqualität in Ökobilanzen. Agroscope FAL Reckenholz

  • van Oers L, de Koning A, Guinée JB, Huppes G (2002) Abiotic resource depletion in LCA. Road and Hydraulic Engineering Institute of the Dutch Ministry of Transport

  • Payen S, Basset-Mens C, Núñez M et al (2016) Salinisation impacts in life cycle assessment: a review of challenges and options towards their consistent integration. Int J Life Cycle Assess:577–594

  • Pfister S, Koehler A, Hellweg S (2009) Assessing the environmental impact of freshwater consumption in life cycle assessment. Environ Sci Technol 43:4098–4104

    Article  CAS  Google Scholar 

  • Potting J, Hauschild MZ (2005) Spatial Differentiation in Life Cycle Impact Assessment-The EDIP 2003 methodology. Danish Environmental Protection Agency

  • Ridoutt BG, Pfister S (2010) A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Glob Environ Chang Policy Dimens 20:113–120

    Article  Google Scholar 

  • Rørbech JT, Vadenbo C, Hellweg S, Astrup TF (2014) Impact assessment of abiotic resources in LCA: quantitative comparison of selected characterization models. Environ Sci Technol 48:11072–11081

    Article  Google Scholar 

  • Rugani B, Huijbregts MAJ, Mutel CL et al (2011) Solar energy demand (SED) of commodity life cycles. Environ Sci Technol 45:5426–5433

    Article  CAS  Google Scholar 

  • Saad R, Koellner T, Margni M (2013) Land use impacts on freshwater regulation, erosion regulation, and water purification: a spatial approach for a global scale level. Int J Life Cycle Assess 18:1253–1264

    Article  Google Scholar 

  • Saurat M, Ritthoff M (2013) Calculating MIPS 2.0. Resources 2:581–607. doi:10.3390/resources2040581

    Article  Google Scholar 

  • Scherer L, Pfister S (2015) Modelling spatially explicit impacts from phosphorus emissions in agriculture. Int J Life Cycle Assess 20:785–795

    Article  CAS  Google Scholar 

  • Schmidt JH, Weidema BP, Brandão M (2015) A framework for modelling indirect land use changes in life cycle assessment. J Clean Prod 99:230–238

    Article  Google Scholar 

  • Schneider L, Berger M, Finkbeiner M (2011) The anthropogenic stock extended abiotic depletion potential (AADP) as a new parameterisation to model the depletion of abiotic resources. Int J Life Cycle Assess 16:929–936

    Article  Google Scholar 

  • Schneider L, Berger M, Finkbeiner M (2015) Abiotic resource depletion in LCA—background and update of the anthropogenic stock extended abiotic depletion potential (AADP) model. Int J Life Cycle Assess 20:709–721

    Article  CAS  Google Scholar 

  • Steen B (1999) A systematic approach to environmental priority strategies in product development. CPM-Centre for Environmental Assessment of Products and Material Systems

  • Steen BA (2006) Abiotic resource depletion. Different perceptions of the problem with mineral deposits. Int J Life Cycle Assess 11:49–54

    Article  Google Scholar 

  • Steen B (2015) The EPS 2015d impact assessment method – an overview

  • Stewart M, Weidema B (2005) A consistent framework for assessing the impacts from resource use: a focus on resource functionality. Int J Life Cycle Assess 10:240–247

    Article  Google Scholar 

  • Stoessel F, Bachmann D, Hellweg S (2016) Assessing the environmental impacts of agricultural production on soil in a global Life Cycle Impact Assessment method: A framework. In: LCA Food 2016- Proceedings

  • Swart P, Dewulf J (2013) Quantifying the impacts of primary metal resource use in life cycle assessment based on recent mining data. Resour Conserv Recycl 73:180–187

    Article  Google Scholar 

  • Swart P, Alvarenga RAF, Dewulf J (2015) Abiotic Resource Use. In: Life Cycle Impact Assessment. Springer, Dordrecht, pp 247–271

  • Taelman SE, De Meester S, Schaubroeck T et al (2014) Accounting for the occupation of the marine environment as a natural resource in life cycle assessment: an exergy based approach. Resour Conserv Recycl 91:1–10

    Article  Google Scholar 

  • Taelman SE, Schaubroeck T, De Meester S et al (2016) Accounting for land use in life cycle assessment: the value of NPP as a proxy indicator to assess land use impacts on ecosystems. Sci Total Environ 550:143–156

    Article  CAS  Google Scholar 

  • Tilton JE, Lagos G (2007) Assessing the long-run availability of copper. Resour Policy 32:19–23

    Article  Google Scholar 

  • Udo de Haes HA, Finnveden G, Goedkoop M et al (eds) (2002) Life-cycle impact assessment: striving towards best practice. Society of Environmental Toxicology and Chemistry (SETAC), Pensacola

    Google Scholar 

  • Vidal Legaz B, Maia De Souza D, Teixeira RFM et al (2016) Soil quality, properties, and functions in life cycle assessment: an evaluation of models. J Clean Prod 140(Part 2):502–515

    Google Scholar 

  • Vieira MDM, Goedkoop MJ, Storm P, Huijbregts MAJ (2012) Ore grade decrease as life cycle impact indicator for metal scarcity: the case of copper. Environ Sci Technol 46:12772–12778

    Article  CAS  Google Scholar 

  • Vieira MDM, Ponsioen TC, Goedkoop MJ, Huijbregts MAJ (2016a) Surplus cost potential as a life cycle impact indicator for metal extraction. Resources 5:2

    Article  Google Scholar 

  • Vieira MDM, Ponsioen TC, Goedkoop MJ, Huijbregts MAJ (2016b) Surplus ore potential as a scarcity indicator for resource extraction. J Ind Ecol. doi:10.1111/jiec.12444

    Google Scholar 

  • Weidema BP, Hauschild MZ, Jolliet O (2007) Preparing characterisation methods for endpoint impact assessment. Available from lca-net.com/files/Stepwise2006v1.5.3.zip

  • West J (2011) Decreasing metal ore grades: are they really being driven by the depletion of high-grade deposits? J Ind Ecol 15:165–168

    Article  Google Scholar 

  • WTO (2010) World Trade Report 2010: Trade in natural resources. World Trade Organization (WTO)

Download references

Acknowledgements

We thank Johannes Drielsma (Euromines) for valuable comments on the manuscript and for fruitful discussions as well as two anonymous reviewers for their thoughtful comments and helpful suggestions. This work was supported by the UNEP/SETAC Life Cycle Initiative. P. Fantke was supported by the Marie Curie project Quan-Tox (GA No. 631910) funded by the European Commission under the Seventh Framework Programme. D. Maia de Souza is funded by the Alberta Livestock Meat Agency Ltd., grant number 2015E034R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Sonderegger.

Additional information

Responsible editor: Thomas Koellner

Electronic supplementary material

ESM 1

(DOCX 226 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonderegger, T., Dewulf, J., Fantke, P. et al. Towards harmonizing natural resources as an area of protection in life cycle impact assessment. Int J Life Cycle Assess 22, 1912–1927 (2017). https://doi.org/10.1007/s11367-017-1297-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-017-1297-8

Keywords

Navigation