Skip to main content
Log in

Brain age prediction across the human lifespan using multimodal MRI data

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Measuring differences between an individual’s age and biological age with biological information from the brain have the potential to provide biomarkers of clinically relevant neurological syndromes that arise later in human life. To explore the effect of multimodal brain magnetic resonance imaging (MRI) features on the prediction of brain age, we investigated how multimodal brain imaging data improved age prediction from more imaging features of structural or functional MRI data by using partial least squares regression (PLSR) and longevity data sets (age 6–85 years). First, we found that the age-predicted values for each of these ten features ranged from high to low: cortical thickness (R = 0.866, MAE = 7.904), all seven MRI features (R = 0.8594, MAE = 8.24), four features in structural MRI (R = 0.8591, MAE = 8.24), fALFF (R = 0.853, MAE = 8.1918), gray matter volume (R = 0.8324, MAE = 8.931), three rs-fMRI feature (R = 0.7959, MAE = 9.744), mean curvature (R = 0.7784, MAE = 10.232), ReHo (R = 0.7833, MAE = 10.122), ALFF (R = 0.7517, MAE = 10.844), and surface area (R = 0.719, MAE = 11.33). In addition, the significance of the volume and size of brain MRI data in predicting age was also studied. Second, our results suggest that all multimodal imaging features, except cortical thickness, improve brain-based age prediction. Third, we found that the left hemisphere contributed more to the age prediction, that is, the left hemisphere showed a greater weight in the age prediction than the right hemisphere. Finally, we found a nonlinear relationship between the predicted age and the amount of MRI data. Combined with multimodal and lifespan brain data, our approach provides a new perspective for chronological age prediction and contributes to a better understanding of the relationship between brain disorders and aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data and code availability

Data used in this study are from the enhanced Nathan Klein Institute-Rocklan Sample dataset and are publicly available at http://fcon_1000.projects.nitrc.org/indi/enhanced/. In addition, you can find two publicly available programs at http://www.fil.ion.ucl.ac.uk/spm/software/spm12/, and http://www.rfmri.org/DPABI. PLSR MATLAB code can be provided according to the requirements of the author.

References

  1. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, Nugent TF, Herman DH, Clasen LS, Toga AW, Rapoport JL, Thompson PM. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci. 2004;101:8174–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hogstrom LJ, Westlye LT, Walhovd KB, Fjell AM. The structure of the cerebral cortex across adult life: age-related patterns of surface area, thickness, and gyrification. Cereb Cortex. 2013;23:2521–30.

    Article  PubMed  Google Scholar 

  3. Raz N, Rodrigue KM. Differential aging of the brain: patterns, cognitive correlates and modifiers. Neurosci Biobehav Rev. 2006;30:730–48.

    Article  PubMed  PubMed Central  Google Scholar 

  4. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bijsterbosch J. How old is your brain? Nat Neurosci. 2019;22:1611–2.

    Article  CAS  PubMed  Google Scholar 

  6. Ziegler G, Dahnke R, Jäncke L, Yotter RA, May A, Gaser C. Brain structural trajectories over the adult lifespan. Hum Brain Mapp. 2012;33:2377–89.

    Article  PubMed  Google Scholar 

  7. Dennis EL, Thompson PM. Functional brain connectivity using fMRI in aging and Alzheimer’s disease. Neuropsychol Rev. 2014;24:49–62.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liem F, Varoquaux G, Kynast J, Beyer F, Kharabian Masouleh S, Huntenburg JM, Lampe L, Rahim M, Abraham A, Craddock RC, Riedel-Heller S, Luck T, Loeffler M, Schroeter ML, Witte AV, Villringer A, Margulies DS. Predicting brain-age from multimodal imaging data captures cognitive impairment. NeuroImage. 2017;148:179–88.

    Article  PubMed  Google Scholar 

  9. Lyall AE, Shi F, Geng X, Woolson S, Li G, Wang L, Hamer RM, Shen D, Gilmore JH. Dynamic development of regional cortical thickness and surface area in early childhood. Cereb Cortex. 2015;25:2204–12.

    Article  PubMed  Google Scholar 

  10. Wang F, Lian C, Wu Z, Zhang H, Li T, Meng Y, Wang L, Lin W, Shen D, Li G. Developmental topography of cortical thickness during infancy. Proc Natl Acad Sci. 2019;116:15855–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN, Barnes KA, Dubis JW, Feczko E, Coalson RS, Pruett JR Jr, Barch DM, Petersen SE, Schlaggar BL. Prediction of individual brain maturity using fMRI. Science. 2010;329:1358–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cole JH, Leech R, Sharp DJ. Prediction of brain age suggests accelerated atrophy after traumatic brain injury. Ann Neurol. 2015;77:571–81.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Aycheh HM, Seong JK, Shin JH, Na DL, Kang B, Seo SW, Sohn KA. Biological brain age prediction using cortical thickness data: a large scale cohort study. Front Aging Neurosci. 2018;22(10):252. https://doi.org/10.3389/fnagi.2018.00252.

    Article  Google Scholar 

  14. Niu X, Zhang F, Kounios J, Liang H. Improved prediction of brain age using multimodal neuroimaging data. Hum Brain Mapp. 2020;41:1626–43.

    Article  PubMed  Google Scholar 

  15. Rokicki J, Wolfers T, Nordhøy W, Tesli N, Quintana DS, Alnæs D, Richard G, Lange AMG, Lund MJ, Norbom L, Agartz I, Melle I, Nærland T, Selbæk G, Persson K, Nordvik JE, Schwarz E, Andreassen OA, Kaufmann T, Westlye LT. Multimodal imaging improves brain age prediction and reveals distinct abnormalities in patients with psychiatric and neurological disorders. Hum Brain Mapp. 2020;42:1714–26.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Anatürk M, Kaufmann T, Cole JH, Suri S, Griffanti L, Zsoldos E, Filippini N, Singh-Manoux A, Kivimäki M, Westlye LT, Ebmeier KP, Lange AMG. Prediction of brain age and cognitive age: quantifying brain and cognitive maintenance in aging. Hum Brain Mapp. 2020;42:1626–40.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cheng J, Liu Z, Guan H, Wu Z, Zhu H, Jiang J, Wen W, Tao D, Liu T. Brain age estimation from MRI using cascade networks with ranking loss, Ieee T Med. Imaging. 2021;40:3400–12.

    Article  Google Scholar 

  18. Treder MS, Shock JP, Stein DJ, du Plessis S, Seedat S, Tsvetanov KA. Correlation constraints for regression models: controlling bias in brain age prediction. Front Psychiatry. 2021;18(12):615754. https://doi.org/10.3389/fpsyt.2021.615754.

    Article  Google Scholar 

  19. Ball G, Kelly CE, Beare R, Seal ML. Individual variation underlying brain age estimates in typical development. NeuroImage. 2021;235:118036.

    Article  PubMed  Google Scholar 

  20. Baecker L, Dafflon J, Costa PF, Garcia-Dias R, Vieira S, Scarpazza C, Calhoun VD, Sato JR, Mechelli A, Pinaya WHL. Brain age prediction: a comparison between machine learning models using region- and voxel-based morphometric data. Hum Brain Mapp. 2021;42:2332–46.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhu JD, Tsai SJ, Lin CP, Lee YJ, Yang AC. Predicting aging trajectories of decline in brain volume, cortical thickness and fractional anisotropy in schizophrenia. Schizophrenia (Heidelb). 2023;9(1):1. https://doi.org/10.1038/s41537-022-00325-w.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Millar PR, Gordon BA, Luckett PH, Benzinger TLS, Cruchaga C, Fagan AM, Hassenstab JJ, Perrin RJ, Schindler SE, Allegri RF, Day GS, Farlow MR, Mori H, Nübling G, Alzheimer DI, Network; Bateman RJ, Morris JC, Ances BM. Multimodal brain age estimates relate to Alzheimer disease biomarkers and cognition in early stages: a cross-sectional observational study. Elife. 2023;6(12):e81869. https://doi.org/10.7554/eLife.81869.

    Article  Google Scholar 

  23. Ballester PL, Suh JS, Ho NCW, Liang L, Hassel S, Strother SC, Arnott SR, Minuzzi L, Sassi RB, Lam RW, Milev R, Müller DJ, Taylor VH, Kennedy SH, Reilly JP, Palaniyappan L, Dunlop K, Frey BN. Gray matter volume drives the brain age gap in schizophrenia: a SHAP study. Schizophrenia (Heidelb). 2023;9(1):3. https://doi.org/10.1038/s41537-022-00330-z.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bonifazi P, Erramuzpe A, Diez I, Gabilondo I, Boisgontier MP, Pauwels L, Stramaglia S, Swinnen SP, Cortes JM. Structure–function multi-scale connectomics reveals a major role of the fronto-striato-thalamic circuit in brain aging. Hum Brain Mapp. 2018;39:4663–77.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mouches P, Wilms M, Rajashekar D, Langner S, Forkert ND. Multimodal biological brain age prediction using magnetic resonance imaging and angiography with the identification of predictive regions. Hum Brain Mapp. 2022;43:2554–66.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Madan CR, Kensinger EA. Predicting age from cortical structure across the lifespan. Eur J Neurosci. 2018;47:399–416.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chung Y, Addington J, Bearden CE, Cadenhead K, Cornblatt B, Mathalon DH, McGlashan T, Perkins D, Seidman LJ, Tsuang M, Walker E, Woods SW, McEwen S, van Erp TGM, Cannon TD, North American Prodrome Longitudinal Study (NAPLS) Consortium and the Pediatric Imaging, Neurocognition, and Genetics (PING) Study Consortium. Use of machine learning to determine deviance in neuroanatomical maturity associated with future psychosis in youths at clinically high risk. JAMA Psychiatry. 2018;75(9):960–8. https://doi.org/10.1001/jamapsychiatry.2018.1543.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cole JH, Poudel RPK, Tsagkrasoulis D, Caan MWA, Steves C, Spector TD, Montana G. Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. Neuroimage. 2017;163:115–24.

    Article  PubMed  Google Scholar 

  29. Jonsson BA, Bjornsdottir G, Thorgeirsson TE, Ellingsen LM, Walters GB, Gudbjartsson DF, Stefansson H, Stefansson K, Ulfarsson MO. Brain age prediction using deep learning uncovers associated sequence variants. Nat Commun. 2019;10(1):5409. https://doi.org/10.1038/s41467-019-13163-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dinsdale NK, Bluemke E, Smith SM, Arya Z, Vidaurre D, Jenkinson M, Namburete AIL. Learning patterns of the ageing brain in MRI using deep convolutional networks. NeuroImage. 2021;224:117401.

    Article  PubMed  Google Scholar 

  31. Cole JH. Multimodality neuroimaging brain-age in UK biobank: relationship to biomedical, lifestyle, and cognitive factors. Neurobiol Aging. 2020;92:34–42.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Peng H, Gong W, Beckmann CF, Vedaldi A, Smith SM. Accurate brain age prediction with lightweight deep neural networks. Medical Image Analysis. 2021;68:101871.

    Article  PubMed  Google Scholar 

  33. Kwak S, Kim H, Chey J, Youm Y. Feeling how old I am: Subjective age is associated with estimated brain age. Front Aging Neurosci. 2018;7(10):168. https://doi.org/10.3389/fnagi.2018.00168.

    Article  Google Scholar 

  34. Tamnes CK, Østby Y, Fjell AM, Westlye LT, Due-Tønnessen P, Walhovd KB. Brain maturation in adolescence and young adulthood: regional age-related changes in cortical thickness and white matter volume and microstructure. Cereb Cortex. 2010;20:534–48.

    Article  PubMed  Google Scholar 

  35. He S, Grant PE, Ou Y. Global-local transformer for brain age estimation, Ieee T Med. Imaging. 2022;41:213–24.

    Article  Google Scholar 

  36. DRS KZ, Fichtinger G. Handbook of medical image computing and computer assisted intervention [M]. New York: Academic Press; 2020.

    Google Scholar 

  37. Dejong S. Simpls - an alternative approach to partial least-squares regression. Chemom Intell Lab Syst. 1993;18:251–63.

    Article  CAS  Google Scholar 

  38. Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst. 2001;58:109–30.

    Article  CAS  Google Scholar 

  39. Nooner KB, Colcombe SJ, Tobe RH, Mennes M, Benedict MM, Moreno AL, Panek LJ, Brown S, Zavitz ST, Li Q, Sikka S, Gutman D, Bangaru S, Schlachter RT, Kamiel SM, Anwar AR, Hinz CM, Kaplan MS, Rachlin AB, et al. The NKI-Rockland sample: a model for accelerating the pace of discovery science in psychiatry. Front Neurosci. 2012;16(6):152. https://doi.org/10.3389/fnins.2012.00152.

    Article  Google Scholar 

  40. Ashburner J. SPM: a history. Neuroimage. 2012;62:791–800.

    Article  PubMed  Google Scholar 

  41. Yan CG, Wang XD, Zuo XN, Zang YF. DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinformatics. 2016;14:339–51.

    Article  PubMed  Google Scholar 

  42. Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA, Vogel AC, Laumann TO, Miezin FM, Schlaggar BL, Petersen SE. Functional network organization of the human brain. Neuron. 2011;72:665–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Friston KJ, Holmes A, Poline JB, Price CJ, Frith CD. Detecting activations in PET and fMRI: levels of inference and power. Neuroimage. 1996;4:223–35.

    Article  CAS  PubMed  Google Scholar 

  44. Destrieux C, Fischl B, Dale A, Halgren E. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage. 2010;53:1–15.

    Article  PubMed  Google Scholar 

  45. Yu-Feng Z, Yong H, Chao-Zhe Z, Qing-Jiu C, Man-Qiu S, Meng L, Li-Xia T, Tian-Zi J, Yu-Feng W. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Develop. 2007;29:83–91.

    Article  Google Scholar 

  46. Zou Q-H, Zhu C-Z, Yang Y, Zuo X-N, Long X-Y, Cao Q-J, Wang Y-F, Zang Y-F. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods. 2008;172:137–41.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zang Y, Jiang T, Lu Y, He Y, Tian L. Regional homogeneity approach to fMRI data analysis. Neuroimage. 2004;22:394–400.

    Article  PubMed  Google Scholar 

  48. Fischl B. FreeSurfer. Neuroimage. 2012;62:774–81.

    Article  PubMed  Google Scholar 

  49. Siffredi V, Preti MG, Kebets V, Obertino S, Leventer RJ, McIlroy A, Wood AG, Anderson V, Spencer-Smith MM, Van De Ville D. Structural neuroplastic responses preserve functional connectivity and neurobehavioural outcomes in children born without corpus callosum. Cereb Cortex. 2021;31:1227–39.

    Article  PubMed  Google Scholar 

  50. Abdi H, Williams LJ. Partial least squares methods: partial least squares correlation and partial least square regression. Methods Mol Biol. 2013;930:549–79. https://doi.org/10.1007/978-1-62703-059-5_23.

    Article  CAS  PubMed  Google Scholar 

  51. Sjostrom M, Eriksson L, Hellberg S, Jonsson J, Skagerberg B, Wold S. Peptide QSARS: PLS modelling and design in principal properties. Prog Clin Biol Res. 1989;291:313–7.

    CAS  PubMed  Google Scholar 

  52. McIntosh AR, Lobaugh NJ. Partial least squares analysis of neuroimaging data: applications and advances. Neuroimage. 2004;23:S250–63.

    Article  PubMed  Google Scholar 

  53. Krishnan A, Williams LJ, McIntosh AR, Abdi H. Partial least squares (PLS) methods for neuroimaging: a tutorial and review. Neuroimage. 2011;56:455–75.

    Article  PubMed  Google Scholar 

  54. Rudolph MD, Miranda-Domínguez O, Cohen AO, Breiner K, Steinberg L, Bonnie RJ, Scott ES, Taylor-Thompson K, Chein J, Fettich KC, Richeson JA, Dellarco DV, Galván A, Casey BJ, Fair DA. At risk of being risky: the relationship between “brain age” under emotional states and risk preference. Dev Cogn Neurosci. 2017;24:93–106.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kebets V, Holmes AJ, Orban C, Tang S, Li J, Sun N, Kong R, Poldrack RA, Yeo BTT. Somatosensory-motor dysconnectivity spans multiple transdiagnostic dimensions of psychopathology. Biol Psychiat. 2019;86:779–91.

    Article  PubMed  Google Scholar 

  56. Martens HA, Dardenne P. Validation and verification of regression in small data sets. Chemom Intell Lab Syst. 1998;44:99–121.

    Article  CAS  Google Scholar 

  57. Goyal MS, Blazey TM, Su Y, Couture LE, Durbin TJ, Bateman RJ, Benzinger TLS, Morris JC, Raichle ME, Vlassenko AG. Persistent metabolic youth in the aging female brain. Proc Natl Acad Sci. 2019;116:3251–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Trollor JN, Valenzuela MJ. Brain ageing in the new millennium. Aust N Z J Psychiatry. 2016;35:788–805.

    Article  Google Scholar 

  59. Peters R. Ageing and the brain. Postgrad Med J. 2006;82:84–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Anderton BH. Ageing of the brain. Mech Ageing Dev. 2002;123:811–7.

    Article  CAS  PubMed  Google Scholar 

  61. Barnes CA, Bliss TVP, Collingridge GL, Morris RGM. Long-term potentiation and the ageing brain, Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. 2003;358:765–72.

    CAS  PubMed Central  Google Scholar 

  62. Wang J, Knol MJ, Tiulpin A, Dubost F, de Bruijne M, Vernooij MW, Adams HHH, Ikram MA, Niessen WJ, Roshchupkin GV. Gray matter age prediction as a biomarker for risk of dementia. Proc Natl Acad Sci. 2019;116:21213–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC, Rapoport JL. Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci. 1999;2:861–3.

    Article  CAS  PubMed  Google Scholar 

  64. Raz N. The aging brain: structural changes and their implications for cognitive aging. In: Dixon R, Backman L, Nilsson L-G, editors. New frontiers in cognitive aging. Oxford: Oxford Academic; 2004. p. 115–134. https://doi.org/10.1093/acprof:oso/9780198525691.003.0006.

  65. Sussman D, Leung RC, Chakravarty MM, Lerch JP, Taylor MJ. The developing human brain: agerelated changes in cortical, subcortical, and cerebellar anatomy. Brain and Behavior. 2016;6(4):e00457. https://doi.org/10.1002/brb3.457.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kong X-Z, Mathias SR, Guadalupe T, Glahn DC, Franke B, Crivello F, Tzourio-Mazoyer N, Fisher SE, Thompson PM, Francks C. Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium. Proc Natl Acad Sci. 2018;115:E5154–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Geschwind N, Levitsky W. Human brain: left-right asymmetries in temporal speech region. Science. 1968;161(3837):186–7. https://www.science.org/doi/abs/10.1126/science.161.3837.186

    Article  CAS  PubMed  Google Scholar 

  68. Wang J, Li W, Miao W, Dai D, Hua J, He H. Age estimation using cortical surface pattern combining thickness with curvatures. Med Biol Eng Compu. 2014;52:331–41.

    Article  Google Scholar 

  69. Valizadeh SA, Hänggi J, Mérillat S, Jäncke L. Age prediction on the basis of brain anatomical measures. Hum Brain Mapp. 2017;38:997–1008.

    Article  CAS  PubMed  Google Scholar 

  70. Brown TT, Kuperman JM, Chung Y, Erhart M, McCabe C, Hagler DJ, Venkatraman VK, Akshoomoff N, Amaral DG, Bloss CS, Casey BJ, Chang L, Ernst TM, Frazier JA, Gruen JR, Kaufmann WE, Kenet T, Kennedy DN, Murray SS, Sowell ER, Jernigan TL, Dale AM. Neuroanatomical assessment of biological maturity. Curr Biol. 2012;22:1693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ducharme S, Albaugh MD, Nguyen T-V, Hudziak JJ, Mateos-Pérez JM, Labbe A, Evans AC, Karama S. Trajectories of cortical thickness maturation in normal brain development — the importance of quality control procedures. Neuroimage. 2016;125:267–79.

    Article  PubMed  Google Scholar 

  72. Tamnes CK, Herting MM, Goddings A-L, Meuwese R, Blakemore S-J, Dahl RE, Güroğlu B, Raznahan A, Sowell ER, Crone EA, Mills KL. Development of the cerebral cortex across adolescence: a multisample study of inter-related longitudinal changes in cortical volume, surface area, and thickness. J Neurosci. 2017;37:3402–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Abe O, Yamasue H, Aoki S, Suga M, Yamada H, Kasai K, Masutani Y, Kato N, Kato N, Ohtomo K. Aging in the CNS: comparison of gray/white matter volume and diffusion tensor data. Neurobiol Aging. 2008;29:102–16.

    Article  PubMed  Google Scholar 

  74. Amoroso N, La Rocca M, Bellantuono L, Diacono D, Fanizzi A, Lella E, Lombardi A, Maggipinto T, Monaco A, Tangaro S, Bellotti R. Deep learning and multiplex networks for accurate modeling of brain age. Front Aging Neurosci. 2019;22(11):115. https://doi.org/10.3389/fnagi.2019.00115.

    Article  Google Scholar 

  75. Zhao Y, Klein A, Castellanos FX, Milham MP. Brain age prediction: Cortical and subcortical shape covariation in the developing human brain. Neuroimage. 2019;15(202):116149. https://doi.org/10.1016/j.neuroimage.2019.116149.

    Article  Google Scholar 

  76. Bellantuono L, Marzano L, La Rocca M, Duncan D, Lombardi A, Maggipinto T, Monaco A, Tangaro S, Amoroso N, Bellotti R. Predicting brain age with complex networks: from adolescence to adulthood. NeuroImage. 2021;225.

  77. Terribilli D, Schaufelberger MS, Duran FLS, Zanetti MV, Curiati PK, Menezes PR, Scazufca M, Amaro E, Leite CC, Busatto GF. Age-related gray matter volume changes in the brain during non-elderly adulthood. Neurobiol Aging. 2011;32:354–68.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Mwangi B, Hasan KM, Soares JC. Prediction of individual subject’s age across the human lifespan using diffusion tensor imaging: a machine learning approach. Neuroimage. 2013;75:58–67.

    Article  PubMed  Google Scholar 

  79. Erus G, Battapady H, Satterthwaite TD, Hakonarson H, Gur RE, Davatzikos C, Gur RC. Imaging patterns of brain development and their relationship to cognition. Cereb Cortex. 2014;25:1676–84.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zuo N, Hu T, Liu H, Sui J, Liu Y, Jiang T. Different regional patterns in gray matter-based age prediction. Neurosci Bull. 2023;39:984–8.

    Article  PubMed  Google Scholar 

  81. de Lange AMG, Anatürk M, Rokicki J, Han LKM, Franke K, Alnæs D, Ebmeier KP, Draganski B, Kaufmann T, Westlye LT, Hahn T, Cole JH. Mind the gap: performance metric evaluation in brain-age prediction. Hum Brain Mapp. 2022;43:3113–29.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Dolcos F, Rice HJ, Cabeza R. Hemispheric asymmetry and aging: right hemisphere decline or asymmetry reduction. Neurosci Biobehav Rev. 2002;26:819–25.

    Article  PubMed  Google Scholar 

  83. Mitrushina M, Fogel T, D’Elia L, Uchiyama C, Satz P. Performance on motor tasks as an indication of increased behavioral asymmetry with advancing age. Neuropsychologia. 1995;33:359–64.

    Article  CAS  PubMed  Google Scholar 

  84. Daselaar SM, Cabeza R. Age-related changes in hemispheric organization. In: Cabeza R, Nyberg L, Park D, editors. Cognitive neuroscience of aging: Linking cognitive and cerebral aging. Oxford, UK: Oxford University Press; 2005. p. 325–53.

    Google Scholar 

  85. Learmonth G, Benwell CSY, Thut G, Harvey M. Age-related reduction of hemispheric lateralisation for spatial attention: an EEG study. Neuroimage. 2017;153:139–51.

    Article  PubMed  Google Scholar 

  86. Meyer M, Liem F, Hirsiger S, Jancke L, Hanggi J. Cortical surface area and cortical thickness demonstrate differential structural asymmetry in auditory-related areas of the human cortex. Cereb Cortex. 2013;24:2541–52.

    Article  PubMed  Google Scholar 

  87. Smyser CD, Dosenbach NUF, Smyser TA, Snyder AZ, Rogers CE, Inder TE, Schlaggar BL, Neil JJ. Prediction of brain maturity in infants using machine-learning algorithms. Neuroimage. 2016;136:1–9.

    Article  PubMed  Google Scholar 

  88. Nord CL, Gray A, Charpentier CJ, Robinson OJ, Roiser JP. Unreliability of putative fMRI biomarkers during emotional face processing. Neuroimage. 2017;156:119–27.

    Article  CAS  PubMed  Google Scholar 

  89. Coppola VJ, Bingman VP. c-Fos revealed lower hippocampal participation in older homing pigeons when challenged with a spatial memory task. Neurobiol Aging. 2020;87:98–107.

    Article  PubMed  Google Scholar 

  90. Lund TE, Nørgaard MD, Rostrup E, Rowe JB, Paulson OB. Motion or activity: their role in intra- and inter-subject variation in fMRI. Neuroimage. 2005;26:960–4.

    Article  PubMed  Google Scholar 

  91. Levakov G, Rosenthal G, Shelef I, Raviv TR, Avidan G. From a deep learning model back to the brain—identifying regional predictors and their relation to aging. Hum Brain Mapp. 2020;41:3235–52.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K. The WU-Minn human connectome project: an overview. Neuroimage. 2013;80:62–79.

    Article  PubMed  Google Scholar 

  93. Miller KL, Alfaro-Almagro F, Bangerter NK, Thomas DL, Yacoub E, Xu J, Bartsch AJ, Jbabdi S, Sotiropoulos SN, Andersson JLR, Griffanti L, Douaud G, Okell TW, Weale P, Dragonu I, Garratt S, Hudson S, Collins R, Jenkinson M, Matthews PM, Smith SM. Multimodal population brain imaging in the UK biobank prospective epidemiological study. Nat Neurosci. 2016;19:1523–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. de Lange AG, Cole JH. Commentary: correction procedures in brain-age prediction. Neuroimage Clin. 2020;26:102229. https://doi.org/10.1016/j.nicl.2020.102229.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Varoquaux G. Cross-validation failure: small sample sizes lead to large error bars. Neuroimage. 2018;180:68–77.

    Article  PubMed  Google Scholar 

  96. Sabuncu MR, Konukoglu E. Clinical prediction from structural brain MRI scans: a large-scale empirical study. Neuroinformatics. 2014;13:31–46.

    Article  Google Scholar 

  97. Mateos-Pérez JM, Dadar M, Lacalle-Aurioles M, Iturria-Medina Y, Zeighami Y, Evans AC. Structural neuroimaging as clinical predictor: a review of machine learning applications. NeuroImage: Clinical. 2018;20:506–22.

    Article  PubMed  Google Scholar 

  98. de Lange A-MG, Cole JH. Commentary: correction procedures in brain-age prediction. NeuroImage: Clinical. 2016;26.

  99. Cole JH, Franke K. Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci. 2017;40:681–90.

    Article  CAS  PubMed  Google Scholar 

  100. Svennerholm L, Boström K, Jungbjer B. Changes in weight and compositions of major membrane components of human brain during the span of adult human life of Swedes. Acta Neuropathol. 1997;94:345–52.

    Article  CAS  PubMed  Google Scholar 

  101. Scahill RI, Frost C, Jenkins R, Whitwell JL, Rossor MN, Fox NC. A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch Neurol. 2003;60(7):989–94. https://doi.org/10.1001/archneur.60.7.989.

    Article  PubMed  Google Scholar 

  102. Pardoe HR, Kuzniecky R. NAPR: a cloud-based framework for neuroanatomical age prediction. Neuroinformatics. 2017;16:43–9.

    Article  Google Scholar 

  103. Le TT, Kuplicki RT, McKinney BA, Yeh HW, Thompson WK, Paulus MP. Tulsa 1000 investigators. A nonlinear simulation framework supports adjusting for age when analyzing BrainAGE. Front Aging Neurosci. 2018;24(10):317. https://doi.org/10.3389/fnagi.2018.00317.

    Article  Google Scholar 

  104. Cole JH, Ritchie SJ, Bastin ME, Valdés Hernández MC, Muñoz Maniega S, Royle N, Corley J, Pattie A, Harris SE, Zhang Q, Wray NR, Redmond P, Marioni RE, Starr JM, Cox SR, Wardlaw JM, Sharp DJ, Deary IJ. Brain age predicts mortality. Mol Psychiatr. 2017;23:1385–92.

    Article  Google Scholar 

  105. Franke K, Gaser C. Ten years of BrainAGE as a neuroimaging biomarker of brain aging: what insights have we gained? Front Neurol. 2019;14(10):789. https://doi.org/10.3389/fneur.2019.00789.

    Article  Google Scholar 

  106. Jiang H, Lu N, Chen K, Yao L, Li K, Zhang J, Guo X. Predicting brain age of healthy adults based on structural MRI parcellation using convolutional neural networks. Front Neurol. 2020;8(10):1346. https://doi.org/10.3389/fneur.2019.01346.

    Article  Google Scholar 

  107. Kaufmann T, van der Meer D, Doan NT, Schwarz E, Lund MJ, Agartz I, Alnæs D, Barch DM, Baur-Streubel R, Bertolino A, Bettella F, Beyer MK, Bøen E, Borgwardt S, Brandt CL, Buitelaar J, Celius EG, Cervenka S, Conzelmann A, Córdova-Palomera A, Dale AM, de Quervain DJF, Di Carlo P, Djurovic S, Dørum ES, Eisenacher S, Elvsåshagen T, Espeseth T, Fatouros-Bergman H, Flyckt L, Franke B, Frei O, Haatveit B, Håberg AK, Harbo HF, Hartman CA, Heslenfeld D, Hoekstra PJ, Høgestøl EA, Jernigan TL, Jonassen R, Jönsson EG, Kirsch P, Kłoszewska I, Kolskår KK, Landrø NI, Le Hellard S, Lesch K-P, Lovestone S, Lundervold A, Lundervold AJ, Maglanoc LA, Malt UF, Mecocci P, Melle I, Meyer-Lindenberg A, Moberget T, Norbom LB, Nordvik JE, Nyberg L, Oosterlaan J, Papalino M, Papassotiropoulos A, Pauli P, Pergola G, Persson K, Richard G, Rokicki J, Sanders A-M, Selbæk G, Shadrin AA, Smeland OB, Soininen H, Sowa P, Steen VM, Tsolaki M, Ulrichsen KM, Vellas B, Wang L, Westman E, Ziegler GC, Zink M, Andreassen OA, Westlye LT. Common brain disorders are associated with heritable patterns of apparent aging of the brain. Nat Neurosci. 2019;22:1617–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hulshoff Pol HE, Schnack HG, Bertens MGBC, van Haren NEM, van der Tweel I, Staal WG, Baaré WFC, Kahn RS. Volume changes in gray matter in patients with schizophrenia. Am J Psychiatr. 2002;159:244–50.

    Article  PubMed  Google Scholar 

  109. Horga G, Bernacer J, Dusi N, Entis J, Chu K, Hazlett EA, Mehmet Haznedar M, Kemether E, Byne W, Buchsbaum MS. Correlations between ventricular enlargement and gray and white matter volumes of cortex, thalamus, striatum, and internal capsule in schizophrenia. Eur Archives Psychiatr Clin Neurosci. 2011;261:467–76.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Guofu Wang who works at Guangxi University of Science and Technology.

Funding

This work was supported by the National Key Research and Development Program of China (2022YFE0134600; 2021YFA0715404), the National Natural Science Foundation of China (62171101; 82250410380), the Sichuan Science and Technology Program (23NSFSC2916), the Key Research and Development Program of Guangxi (2021AB05083), and the Central Universities Foundation, Southwest Minzu University (ZYN2023100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sihai Guan or Bharat Biswal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, S., Jiang, R., Meng, C. et al. Brain age prediction across the human lifespan using multimodal MRI data. GeroScience 46, 1–20 (2024). https://doi.org/10.1007/s11357-023-00924-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-00924-0

Keywords

Navigation