Skip to main content
Log in

SIRT1 safeguards adipogenic differentiation by orchestrating anti-oxidative responses and suppressing cellular senescence

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Adipose tissue is an important endocrine organ that regulates metabolism, immune response and aging in mammals. Healthy adipocytes promote tissue homeostasis and longevity. SIRT1, a conserved NAD+-dependent deacetylase, negatively regulates adipogenic differentiation by deacetylating and inhibiting PPAR-γ. However, knocking out SIRT1 in mesenchymal stem cells (MSCs) in mice not only causes defects in osteogenesis, but also results in the loss of adipose tissues, suggesting that SIRT1 is also important for adipogenic differentiation.

Here, we report that severe impairment of SIRT1 function in MSCs caused significant defects and cellular senescence during adipogenic differentiation. These were observed only when inhibiting SIRT1 during adipogenesis, not when SIRT1 inhibition was imposed before or after adipogenic differentiation. Cells generate high levels of reactive oxygen species (ROS) during adipogenic differentiation. Inhibiting SIRT1 during differentiation resulted in impaired oxidative stress response. Increased oxidative stress with H2O2 or SOD2 knockdown phenocopied SIRT1 inhibition. Consistent with these observations, we found increased p16 levels and senescence associated β-galactosidase activities in the inguinal adipose tissue of MSC-specific SIRT1 knockout mice. Furthermore, previously identified SIRT1 targets involved in oxidative stress response, FOXO3 and SUV39H1 were both required for healthy adipocyte formation during differentiation. Finally, senescent adipocytes produced by SIRT1 inhibition showed decreased Akt phosphorylation in response to insulin, a lack of response to adipocytes browning signals, and increased survival for cancer cells under chemotherapy drug treatments. These findings suggest a novel safeguard function for SIRT1 in regulating MSC adipogenic differentiation, distinct from its roles in suppressing adipogenic differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new sequencing data were created or analyzed in this study.

References

  1. Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature. 2006;444(7121):847–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Argmann C, et al. Ppargamma2 is a key driver of longevity in the mouse. PLoS Genet. 2009;5(12):e1000752.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;444(7121):881–7.

    Article  CAS  PubMed  Google Scholar 

  4. Fiorenza CG, Chou SH, Mantzoros CS. Lipodystrophy: pathophysiology and advances in treatment. Nat Rev Endocrinol. 2011;7(3):137–50.

    Article  CAS  PubMed  Google Scholar 

  5. Matsuzawa Y. Adiponectin: a key player in obesity related disorders. Curr Pharm Des. 2010;16(17):1896–901.

    Article  CAS  PubMed  Google Scholar 

  6. Ohashi K, et al. Role of anti-inflammatory adipokines in obesity-related diseases. Trends Endocrinol Metab. 2014;25(7):348–55.

    Article  CAS  PubMed  Google Scholar 

  7. Newsholme P, de Bittencourt Jr., PI. The fat cell senescence hypothesis: a mechanism responsible for abrogating the resolution of inflammation in chronic disease. Curr Opin Clin Nutr Metab Care. 2014;17(4):295-305.

  8. Chen YW, et al. Ablation of XP-V gene causes adipose tissue senescence and metabolic abnormalities. Proc Natl Acad Sci U S A. 2015;112(33):E4556–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Campisi J, Robert L. Cell senescence: role in aging and age-related diseases. Interdiscip Top Gerontol. 2014;39:45–61.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Baker DJ, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 2016;530(7589):184–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chang J, et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med. 2016;22(1):78–83.

    Article  CAS  PubMed  Google Scholar 

  12. Vicencio JM, et al. Senescence, apoptosis or autophagy? When a damaged cell must decide its path–a mini-review. Gerontology. 2008;54(2):92–9.

    Article  PubMed  Google Scholar 

  13. Jurk D, et al. Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell. 2012;11(6):996–1004.

    Article  CAS  PubMed  Google Scholar 

  14. Tan FC, et al. Are there roles for brain cell senescence in aging and neurodegenerative disorders? Biogerontology. 2014;15(6):643–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xiong ZM, et al. An inhibitory role of progerin in the gene induction network of adipocyte differentiation from iPS cells. Aging (Albany NY). 2013;5(4):288–303.

    Article  CAS  PubMed  Google Scholar 

  16. Brunet A, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004;303(5666):2011–5.

    Article  CAS  PubMed  Google Scholar 

  17. Langley E, et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J. 2002;21(10):2383–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yeung F, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004;23(12):2369–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Picard F, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. 2004;429(6993):771–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou Y, et al. SIRT1 inhibits adipogenesis and promotes myogenic differentiation in C3H10T1/2 pluripotent cells by regulating Wnt signaling. Cell Biosci. 2015;5:61.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhou Y, et al. SIRT1 suppresses adipogenesis by activating Wnt/beta-catenin signaling in vivo and in vitro. Oncotarget. 2016;7(47):77707–20.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Simic P, et al. SIRT1 regulates differentiation of mesenchymal stem cells by deacetylating beta-catenin. EMBO Mol Med. 2013;5(3):430–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yoon DS, et al. SIRT1 directly regulates SOX2 to maintain self-renewal and multipotency in bone marrow-derived mesenchymal stem cells. Stem Cells. 2014;32(12):3219–31.

    Article  CAS  PubMed  Google Scholar 

  24. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11(8):783–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Imperatore F, et al. SIRT1 regulates macrophage self-renewal. EMBO J. 2017;36(16):2353–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu A, et al. Resistin impairs SIRT1 function and induces senescence-associated phenotype in hepatocytes. Mol Cell Endocrinol. 2013;377(1–2):23–32.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou L, et al. Resistin reduces mitochondria and induces hepatic steatosis in mice by the protein kinase C/protein kinase G/p65/PPAR gamma coactivator 1 alpha pathway. Hepatology. 2013;57(4):1384–93.

    Article  CAS  PubMed  Google Scholar 

  28. Zhou L, et al. Conditioned medium obtained from in vitro differentiated adipocytes and resistin induce insulin resistance in human hepatocytes. FEBS Lett. 2007;581(22):4303–8.

    Article  CAS  PubMed  Google Scholar 

  29. Deutsch MJ, et al. Digital image analysis approach for lipid droplet size quantitation of Oil Red O-stained cultured cells. Anal Biochem. 2014;445:87–9.

    Article  CAS  PubMed  Google Scholar 

  30. Atashi F, Modarressi A, Pepper MS. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells Dev. 2015;24(10):1150–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Furukawa S, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114(12):1752–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Findeisen HM, et al. Oxidative stress accumulates in adipose tissue during aging and inhibits adipogenesis. PLoS One. 2011;6(4):e18532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Higuchi M, et al. Differentiation of human adipose-derived stem cells into fat involves reactive oxygen species and Forkhead box O1 mediated upregulation of antioxidant enzymes. Stem Cells Dev. 2013;22(6):878–88.

    Article  CAS  PubMed  Google Scholar 

  34. Olmos Y, et al. SirT1 regulation of antioxidant genes is dependent on the formation of a FoxO3a/PGC-1alpha complex. Antioxid Redox Signal. 2013;19(13):1507–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guan XH, et al. CD38 Deficiency Protects the Heart from Ischemia/Reperfusion Injury through Activating SIRT1/FOXOs-Mediated Antioxidative Stress Pathway. Oxid Med Cell Longev. 2016;2016:7410257.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pardo PS, et al. Induction of Sirt1 by mechanical stretch of skeletal muscle through the early response factor EGR1 triggers an antioxidative response. J Biol Chem. 2011;286(4):2559–66.

    Article  CAS  PubMed  Google Scholar 

  37. Leontieva OV, Demidenko ZN, Blagosklonny MV. Contact inhibition and high cell density deactivate the mammalian target of rapamycin pathway, thus suppressing the senescence program. Proc Natl Acad Sci U S A. 2014;111(24):8832–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vaquero A, et al. SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature. 2007;450(7168):440–4.

    Article  CAS  PubMed  Google Scholar 

  39. Bosch-Presegue L, et al. Stabilization of Suv39H1 by SirT1 is part of oxidative stress response and ensures genome protection. Mol Cell. 2011;42(2):210–23.

    Article  CAS  PubMed  Google Scholar 

  40. Djeghloul D, et al. Age-Associated Decrease of the Histone Methyltransferase SUV39H1 in HSC Perturbs Heterochromatin and B Lymphoid Differentiation. Stem Cell Reports. 2016;6(6):970–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang W, et al. Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science. 2015;348(6239):1160–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kwon H, Pessin JE. Adipokines mediate inflammation and insulin resistance. Front Endocrinol (Lausanne). 2013;4:71.

    Article  PubMed  Google Scholar 

  43. Demaria M, et al. Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse. Cancer Discov. 2017;7(2):165–76.

    Article  CAS  PubMed  Google Scholar 

  44. Laberge RM, et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol. 2015;17(8):1049–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fischer KR, et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. 2015;527(7579):472–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zheng X, et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature. 2015;527(7579):525–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Berry DC, et al. Cellular Aging Contributes to Failure of Cold-Induced Beige Adipocyte Formation in Old Mice and Humans. Cell Metab. 2017;25(1):166–81.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang Z, et al. Berberine activates thermogenesis in white and brown adipose tissue. Nat Commun. 2014;5:5493.

    Article  CAS  PubMed  Google Scholar 

  49. Bordone L, et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell. 2007;6(6):759–67.

    Article  CAS  PubMed  Google Scholar 

  50. Perrini S, et al. Reduced SIRT1 and SIRT2 expression promotes adipogenesis of human visceral adipose stem cells and associates with accumulation of visceral fat in human obesity. Int J Obes (Lond). 2020;44(2):307–19.

    Article  CAS  PubMed  Google Scholar 

  51. Jung YJ, et al. SIRT1 induces the adipogenic differentiation of mouse embryonic stem cells by regulating RA-induced RAR expression via NCOR1 acetylation. Stem Cell Res. 2020;44:101771.

    Article  CAS  PubMed  Google Scholar 

  52. Wang F, et al. Lipoatrophy and severe metabolic disturbance in mice with fat-specific deletion of PPARgamma. Proc Natl Acad Sci U S A. 2013;110(46):18656–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gavi S, et al. Limb fat to trunk fat ratio in elderly persons is a strong determinant of insulin resistance and adiponectin levels. J Gerontol A Biol Sci Med Sci. 2007;62(9):997–1001.

    Article  PubMed  Google Scholar 

  54. Palmer AK, et al. Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell. 2019;18(3):e12950.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Xu M, et al. Targeting senescent cells enhances adipogenesis and metabolic function in old age. Elife. 2015;4:e12997.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Li Y, et al. Nicotinamide phosphoribosyltransferase (Nampt) affects the lineage fate determination of mesenchymal stem cells: a possible cause for reduced osteogenesis and increased adipogenesis in older individuals. J Bone Miner Res. 2011;26(11):2656–64.

    Article  CAS  PubMed  Google Scholar 

  57. Chen H, et al. Role of SIRT1 and AMPK in mesenchymal stem cells differentiation. Ageing Res Rev. 2014;13:55–64.

    Article  CAS  PubMed  Google Scholar 

  58. Qiang L, et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma. Cell. 2012;150(3):620–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Oberdoerffer P, et al. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell. 2008;135(5):907–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Ted Nash Long Life Foundation grant award and CPRIT Scholar award R1306 to WD.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, AY and WD; Data curation, AY, RY; Formal analysis, AY and WD; Funding acquisition, WD; Investigation, AY, DJ, RY, CG and HL; Methodology, AY, DJ, RY, HL, CG and WD; Project administration, AY and WD; Resources, AY and WD; Supervision, WD; Validation, AY and WD; Writing- Original Draft, AY, and WD; Writing- review & editing, AY, RY, HL, and WD.

Corresponding author

Correspondence to Weiwei Dang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflicting interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, A., Yu, R., Liu, H. et al. SIRT1 safeguards adipogenic differentiation by orchestrating anti-oxidative responses and suppressing cellular senescence. GeroScience 46, 1107–1127 (2024). https://doi.org/10.1007/s11357-023-00863-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-00863-w

Keywords

Navigation