Skip to main content

Advertisement

Log in

Transfer learning in a biomaterial fibrosis model identifies in vivo senescence heterogeneity and contributions to vascularization and matrix production across species and diverse pathologies

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Cellular senescence is a state of permanent growth arrest that plays an important role in wound healing, tissue fibrosis, and tumor suppression. Despite senescent cells’ (SnCs) pathological role and therapeutic interest, their phenotype in vivo remains poorly defined. Here, we developed an in vivo–derived senescence signature (SenSig) using a foreign body response–driven fibrosis model in a p16-CreERT2;Ai14 reporter mouse. We identified pericytes and “cartilage-like” fibroblasts as senescent and defined cell type–specific senescence-associated secretory phenotypes (SASPs). Transfer learning and senescence scoring identified these two SnC populations along with endothelial and epithelial SnCs in new and publicly available murine and human data single-cell RNA sequencing (scRNAseq) datasets from diverse pathologies. Signaling analysis uncovered crosstalk between SnCs and myeloid cells via an IL34–CSF1R–TGFβR signaling axis, contributing to tissue balance of vascularization and matrix production. Overall, our study provides a senescence signature and a computational approach that may be broadly applied to identify SnC transcriptional profiles and SASP factors in wound healing, aging, and other pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The newly generated and publicly available data presented in this manuscript are available from GEO using accession numbers GSE199864 (SnC bulkRNAseq), GSE175890 (VML scRNAseq), GSE135893 (Adams et al. IPF), GSE136831 (Habermann et al. IPF), and GSE123814 (BCC scRNAseq).

References

  1. Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol. 2013;75:685–705.

    CAS  PubMed  Google Scholar 

  2. Childs BG, Li H, Van Deursen JM. Senescent cells: a therapeutic target for cardiovascular disease. J Clin Investig. 2018;128(4):1217–28.

    PubMed  PubMed Central  Google Scholar 

  3. Faust HJ, et al. IL-17 and immunologically induced senescence regulate response to injury in osteoarthritis. J Clin Investig. 2020;130(10):5493–507.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Howcroft TK, et al. The role of inflammation in age-related disease. Aging (Albany NY). 2013;5(1):84.

    CAS  PubMed  Google Scholar 

  5. Jeon OH, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med. 2017;23(6):775–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Jeon OH, et al. Senescence cell–associated extracellular vesicles serve as osteoarthritis disease and therapeutic markers. Jci Insight. 2019;4(7):e125019.

    PubMed  PubMed Central  Google Scholar 

  7. Minamino T, et al. A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med. 2009;15(9):1082–7.

    CAS  PubMed  Google Scholar 

  8. Muñoz-Espín D, et al. Programmed cell senescence during mammalian embryonic development. Cell. 2013;155(5):1104–18.

    PubMed  Google Scholar 

  9. Storer M, et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell. 2013;155(5):1119–30.

    CAS  PubMed  Google Scholar 

  10. Coppé J-P, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6(12):e301.

    PubMed  PubMed Central  Google Scholar 

  11. Tchkonia T, et al. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Investig. 2013;123(3):966–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wan M, Gray-Gaillard EF, Elisseeff JH. Cellular senescence in musculoskeletal homeostasis, diseases, and regeneration. Bone Res. 2021;9(1):1–12.

    Google Scholar 

  13. Bai H, et al. Suppression of transforming growth factor-β signaling delays cellular senescence and preserves the function of endothelial cells derived from human pluripotent stem cells. Stem Cells Transl Med. 2017;6(2):589–600.

    PubMed  Google Scholar 

  14. Dumont P, et al. Induction of replicative senescence biomarkers by sublethal oxidative stresses in normal human fibroblast. Free Radical Biol Med. 2000;28(3):361–73.

    CAS  Google Scholar 

  15. Hooten NN, Evans MK. Techniques to induce and quantify cellular senescence. JoVE (Journal of Visualized Experiments). 2017;123:e55533.

    Google Scholar 

  16. Amor C, et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature. 2020;583(7814):127–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim KM, et al. Identification of senescent cell surface targetable protein DPP4. Genes Dev. 2017;31(15):1529–34.

    PubMed  PubMed Central  Google Scholar 

  18. Poblocka M, et al. Targeted clearance of senescent cells using an antibody-drug conjugate against a specific membrane marker. Sci Rep. 2021;11(1):1–10.

    Google Scholar 

  19. Buechler MB, et al. Cross-tissue organization of the fibroblast lineage. Nature. 2021;593(7860):575–9.

    CAS  PubMed  Google Scholar 

  20. Wei K, et al. Notch signalling drives synovial fibroblast identity and arthritis pathology. Nature. 2020;582(7811):259–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Elyada E, et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 2019;9(8):1102–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chung L, et al. Interleukin 17 and senescent cells regulate the foreign body response to synthetic material implants in mice and humans. Sci Transl Med. 2020;12(539):eaax3799.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Demaria M, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell. 2014;31(6):722–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med. 2018;50(8):1–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Stein-O’Brien GL, et al. Decomposing cell identity for transfer learning across cellular measurements, platforms, tissues, and species. Cell Syst. 2019;8(5):395-411.e8.

    PubMed  PubMed Central  Google Scholar 

  26. Taroni JN, et al. MultiPLIER: a transfer learning framework for transcriptomics reveals systemic features of rare disease. Cell Syst. 2019;8(5):380-394.e4.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Selman M, Pardo A. Fibroageing: an ageing pathological feature driven by dysregulated extracellular matrix-cell mechanobiology. Ageing Res Rev. 2021;70:101393.

    CAS  PubMed  Google Scholar 

  28. Omori S, et al. Generation of a p16 reporter mouse and its use to characterize and target p16(high) cells in vivo. Cell Metab. 2020;32(5):814-828 e6.

    CAS  PubMed  Google Scholar 

  29. Liu JY, et al. Cells exhibiting strong p16(INK4a) promoter activation in vivo display features of senescence. Proc Natl Acad Sci U S A. 2019;116(7):2603-2611.

  30. Scarff KL, et al. A retained selection cassette increases reporter gene expression without affecting tissue distribution in SPI3 knockout/GFP knock-in mice. Genesis: J Gen Dev. 2003;36(3):149–57.

    CAS  Google Scholar 

  31. Schmidt-Supprian M, Wunderlich FT, Rajewsky K. Excision of the Frt-flanked neo (R) cassette from the CD19cre knock-in transgene reduces Cre-mediated recombination. Transgenic Res. 2007;16(5):657–60.

    CAS  PubMed  Google Scholar 

  32. Baker DJ, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 2016;530(7589):184–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sturmlechner I, et al. p21 produces a bioactive secretome that places stressed cells under immunosurveillance. Science. 2021;374(6567):eabb3420.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Childs BG, et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science. 2016;354(6311):472–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wiley CD, et al. SILAC analysis reveals increased secretion of hemostasis-related factors by senescent cells. Cell Rep. 2019;28(13):3329-3337.e5.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Frangogiannis NG. Transforming growth factor-β in tissue fibrosis. J Exp Med. 2020;217(3):e20190103.

    PubMed  PubMed Central  Google Scholar 

  37. Rice LM, et al. Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J Clin Investig. 2015;125(7):2795–807.

    PubMed  PubMed Central  Google Scholar 

  38. Sanderson N, et al. Hepatic expression of mature transforming growth factor beta 1 in transgenic mice results in multiple tissue lesions. Proc Natl Acad Sci 1995;92(7):2572-2576.

  39. Sime PJ, et al. Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. J Clin Investig. 1997;100(4):768–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sonnylal S, et al. Postnatal induction of transforming growth factor β signaling in fibroblasts of mice recapitulates clinical, histologic, and biochemical features of scleroderma. Arthritis Rheum. 2007;56(1):334–44.

    CAS  PubMed  Google Scholar 

  41. Cherry C, et al. Computational reconstruction of the signalling networks surrounding implanted biomaterials from single-cell transcriptomics. Nat Biomed Eng. 2021;5(10):1228–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Macosko EZ, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Korsunsky I, et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 2019;16(12):1289–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Moon KR, et al. Visualizing structure and transitions in high-dimensional biological data. Nat Biotechnol. 2019;37(12):1482–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Becht E, et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol. 2019;37(1):38–44.

    CAS  Google Scholar 

  46. Gulati GS, et al. Single-cell transcriptional diversity is a hallmark of developmental potential. Science. 2020;367(6476):405–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. La Manno G, et al. RNA velocity of single cells. Nature. 2018;560:494 (Nature Publishing Group).

    PubMed  PubMed Central  Google Scholar 

  48. Street K, et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics. 2018;19(1):1–16.

    Google Scholar 

  49. Cheng F, et al. Vimentin coordinates fibroblast proliferation and keratinocyte differentiation in wound healing via TGF-β–Slug signaling. Proc Natl Acad Sci 2016;113(30):E4320-E4327.

  50. Kahounová Z, et al. The fibroblast surface markers FAP, anti-fibroblast, and FSP are expressed by cells of epithelial origin and may be altered during epithelial-to-mesenchymal transition. Cytometry Part A. 2018;93(9):941–51.

    Google Scholar 

  51. Muhl L, et al. Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination. Nat Commun. 2020;11(1):1–18.

    Google Scholar 

  52. Schmidt M, et al. Controlling the balance of fibroblast proliferation and differentiation: impact of Thy-1. J Investig Dermatol. 2015;135(7):1893–902.

    CAS  PubMed  Google Scholar 

  53. Brandt MM, et al. Transcriptome analysis reveals microvascular endothelial cell-dependent pericyte differentiation. Sci Rep. 2019;9(1):1–12.

    Google Scholar 

  54. Kumar A, et al. Specification and diversification of pericytes and smooth muscle cells from mesenchymoangioblasts. Cell Rep. 2017;19(9):1902–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mitchell TS, et al. RGS5 expression is a quantitative measure of pericyte coverage of blood vessels. Angiogenesis. 2008;11(2):141–51.

    CAS  PubMed  Google Scholar 

  56. Hernandez-Segura A, et al. Unmasking transcriptional heterogeneity in senescent cells. Curr Biol. 2017;27(17):2652-2660.e4.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Jun J-I, Lau LF. CCN2 induces cellular senescence in fibroblasts. J Cell Commun Signal. 2017;11(1):15–23.

    PubMed  Google Scholar 

  58. Efremova M, et al. Cell PhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat Protoc. 2020;15(4):1484–506.

    CAS  PubMed  Google Scholar 

  59. Howe KL, et al. Ensembl 2021. Nucleic Acids Res. 2021;49(D1):D884–91.

    CAS  PubMed  Google Scholar 

  60. Adams TS, et al. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Sci Adv. 2020;6(28):eaba1983.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Habermann AC, et al. Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Sci Adv. 2020;6(28):eaba1972.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Yost KE, et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat Med. 2019;25(8):1251–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Tan Y, Cahan P. SingleCellNet: a computational tool to classify single cell RNA-Seq data across platforms and across species. Cell Syst. 2019;9(2):207-213.e2.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Jetten AM. GLIS1–3 transcription factors: critical roles in the regulation of multiple physiological processes and diseases. Cell Mol Life Sci. 2018;75(19):3473–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu S, et al. miR-106b-5p targeting SIX1 inhibits TGF-β1-induced pulmonary fibrosis and epithelial-mesenchymal transition in asthma through regulation of E2F1. Int J Mol Med. 2021;47(3):1–1.

    PubMed  Google Scholar 

  66. Vuga LJ, et al. Cartilage oligomeric matrix protein in idiopathic pulmonary fibrosis. PLoS ONE. 2013;8(12):e83120.

    PubMed  PubMed Central  Google Scholar 

  67. Jun J-I, Lau LF. Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov. 2011;10(12):945–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Valentijn FA, et al. CCN2 aggravates the immediate oxidative stress–DNA damage response following renal ischemia–reperfusion injury. Antioxidants. 2021;10(12):2020.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Dwivedi N, et al. Epithelial vasopressin type-2 receptors regulate myofibroblasts by a YAP-CCN2–dependent mechanism in polycystic kidney disease. J Am Soc Nephrol. 2020;31(8):1697–710.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Mascharak S, et al. Multi-omic analysis reveals divergent molecular events in scarring and regenerative wound healing. Cell Stem Cell. 2022;29:315.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhou X, et al. Microenvironmental sensing by fibroblasts controls macrophage population size. bioRxiv. 2022;15:e1006577.

    Google Scholar 

  72. Diekman BO, et al. Expression of p16 INK 4a is a biomarker of chondrocyte aging but does not cause osteoarthritis. Aging Cell. 2018;17(4):e12771.

    PubMed  PubMed Central  Google Scholar 

  73. Dondossola E, et al. Examination of the foreign body response to biomaterials by nonlinear intravital microscopy. Nat Biomed Eng. 2016;1(1):1–10.

    Google Scholar 

  74. Stockmann C, et al. A wound size-dependent effect of myeloid cell-derived vascular endothelial growth factor on wound healing. J Investig Dermatol. 2011;131(3):797–801.

    CAS  PubMed  Google Scholar 

  75. Willenborg S, et al. CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair. Blood, J Am Soc Hematol. 2012;120(3):613–25.

    CAS  Google Scholar 

  76. Casella G, et al. Transcriptome signature of cellular senescence. Nucleic Acids Res. 2019;47(21):11476.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Saul D, et al. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nat Commun. 2022;13(1):4827.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim JH, et al. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS ONE. 2011;6(4):e18556.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Baker DJ, et al. Opposing roles for p16 Ink4a and p19 Arf in senescence and ageing caused by BubR1 insufficiency. Nat Cell Biol. 2008;10(7):825–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kasper LH, et al. CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity. Mol Cell Biol. 1999;19(1):764–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Dobin A, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.

    CAS  PubMed  Google Scholar 

  82. Frankish A, et al. GENCODE 2021. Nucleic Acids Res. 2021;49(D1):D916–23.

    CAS  PubMed  Google Scholar 

  83. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.

    CAS  PubMed  Google Scholar 

  84. Blighe K, Rana S, and Lewis M. EnhancedVolcano: publication-ready volcano plots with enhanced colouring and labeling. R package version 1.6. 0. 2020 https://github.com/kevinblighe/EnhancedVolcano.

  85. Korotkevich G, et al. Fast gene set enrichment analysis. bioRxiv. 2021;060012.

  86. Wang F, et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn. 2012;14(1):22–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82.

    CAS  PubMed  Google Scholar 

  88. Hao Y, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184(13):3573-87

  89. McInnes L, Healy J, and Melville J. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

  90. Smedley D, et al. BioMart–biological queries made easy. BMC Genomics. 2009;10(1):1–12.

    Google Scholar 

  91. Aibar S, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Meth. 2017;14(11):1083–6.

    CAS  Google Scholar 

Download references

Acknowledgements

Biorender was used to create some of the figures presented in this manuscript. The authors thank David R. Maestas Jr. for experimental insight and advice.

Funding

This research was supported by the Department of Defense (W81XWH-17–1-0627 and W81XWH-14–1-0285), National Institutes of Health Pioneer Award DP1AR076959 (J.H.E.), Bloomberg ~ Kimmel Institute (J.H.E., D.M.P.), Morton Goldberg Professorship (J.H.E.), Bristol Myers Squib (J.H.E., D.M.P.), National Science Foundation Graduate Research Fellowship Program DGE-1746891 (A.R. and A.N.P.), NCI U01CA253403 (E.J.F.), National Institutes of Health R01 AG057493 (J.M.v.D.), and NIH T32 Training Grants 1T32AG058527-01 and 5T32CA153952-08 (J.I.A.).

Author information

Authors and Affiliations

Authors

Contributions

C.C., J.I.A., and J.H.E. conceptualized and drafted figures and manuscript. C.C., K.K., J.H.E, and E.J.F. formulated, performed, and interpreted computational analysis of bulk and single-cell RNA sequencing data sets. C.C., J.C.M., K.K., and J.H. performed Drop-Seq single-cell RNA sequencing. J.I.A., J.H., and L.D.H. performed the volumetric muscle loss surgeries. J.I.A., J.C.M., K.B.S., F.H., and D.M.P. performed and analyzed flow cytometry. H.H.N., A.N.P., and M.T.W. performed, imaged, and analyzed immunofluorescent staining and imaging including sectioning and sample processing. E.F.G-G. performed and analyzed in vitro co-culture experiments. A.R. performed, imaged, and analyzed fluorescence in situ hybridization staining and imaging. H.M. and J.M.v.D. designed and generated the p16-EF/CreERT2 strain, and N.H., I.S., S.T., and D.J.B. contributed to various validation experiments for this model. J.I.A. and J.H.M. performed cryosectioning and imaging of native fluorescence of the fluorescent reporter. A.J.T. and J.I.A. performed fluorescence-activated cytometric sorting. C.J.L.S. performed and analyzed Ingenuity Pathway Analysis. S.K. provided key insights to fibroblast biology that contributed to manuscript preparation and critical review. All authors participated in the construction of the manuscript and figures.

Corresponding author

Correspondence to Jennifer H. Elisseeff.

Ethics declarations

Conflict of interest

J.H.E. holds equity in Unity Biotechnology and Aegeria Soft Tissue and is an advisor for Tessera Therapeutics, HapInScience, and Font Bio. D.M.P. is consultant at Aduro Biotech, Amgen, Astra Zeneca, Bayer, Compugen, DNAtrix, Dynavax Technologies Corporation, Ervaxx, FLX Bio, Immunomic, Janssen, Merck, and Rock Springs Capital. D.M.P. holds equity in Aduro Biotech, DNAtrix, Ervaxx, Five Prime therapeutics, Immunomic, Potenza, and Trieza Therapeutics. D.M.P. is a member of the scientific advisory board for Bristol Myers Squibb, Camden Nexus II, Five Prime Therapeutics, and WindMil. D.M.P. is a member of the board of directors in Dracen Pharmaceuticals. C.C. is the founder and owner of C M Cherry Consulting, LLC. E.J.F. is a member of the scientific advisory board for Resistance Bio and is a consultant for Merck and Mestag Therapeutics. J.M.v.D. is a co-founder of and holds equity in Unity Biotechnology and Cavalry Biosciences. D.J.B. is a shareholder and co-inventor on patent applications licensed to or filed by Unity Biotechnology, a company developing senolytic medicines, including small molecules that selectively eliminate senescent cells. Research in his laboratory has been reviewed by the Mayo Clinic Conflict of Interest Review Board and is being conducted in compliance with Mayo Clinic Conflict of Interest policies.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherry, C., Andorko, J.I., Krishnan, K. et al. Transfer learning in a biomaterial fibrosis model identifies in vivo senescence heterogeneity and contributions to vascularization and matrix production across species and diverse pathologies. GeroScience 45, 2559–2587 (2023). https://doi.org/10.1007/s11357-023-00785-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-00785-7

Keywords

Navigation