Skip to main content
Log in

Intermittent treatment with elamipretide preserves exercise tolerance in aged female mice

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

The pathology of aging impacts multiple organ systems, including the kidney and skeletal and cardiac muscles. Long-term treatment with the mitochondrial-targeted peptide elamipretide has previously been shown to improve in vivo mitochondrial function in aged mice, which is associated with increased fatigue resistance and treadmill performance, improved cardiovascular diastolic function, and glomerular architecture of the kidney. However, elamipretide is a short tetrameric peptide that is not orally bioavailable, limiting its routes of administration. This study tested whether twice weekly intermittent injections of elamipretide could recapitulate the same functional improvements as continuous long-term infusion. We found that intermittent treatment with elamipretide for 8 months preserved exercise tolerance and left ventricular mass in mice with modest protection of diastolic function and skeletal muscle force production but did not affect kidney function as previously reported using continuous treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GAS:

Gastrocnemius

TA:

Tibialis anterior

ELAM:

Elamipretide

References

  1. Tian Q, et al. Muscle mitochondrial energetics predicts mobility decline in well-functioning older adults: the baltimore longitudinal study of aging. Aging Cell. 2022;21:e13552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lewsey SC, et al. Exercise intolerance and rapid skeletal muscle energetic decline in human age-associated frailty. JCI Insight. 2020;5.

  3. Sun N, Youle RJ, Finkel T. The mitochondrial basis of aging. Mol Cell. 2016;61:654–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kauppila TES, Kauppila JHK, Larsson NG. Mammalian mitochondria and aging: an update. Cell Metab. 2017;25:57–71.

    Article  CAS  PubMed  Google Scholar 

  5. Siegel MP, et al. Mitochondrial-targeted peptide rapidly improves mitochondrial energetics and skeletal muscle performance in aged mice. Aging Cell. 2013;12:763–71.

    Article  CAS  PubMed  Google Scholar 

  6. Campbell MD, et al. Improving mitochondrial function with SS-31 reverses age-related redox stress and improves exercise tolerance in aged mice. Free Radic Biol Med. 2019;134:268–81.

    Article  CAS  PubMed  Google Scholar 

  7. Chiao YA, et al. Late-life restoration of mitochondrial function reverses cardiac dysfunction in old mice. Elife. 2020;9.

  8. Sweetwyne MT, et al. The mitochondrial-targeted peptide, SS-31, improves glomerular architecture in mice of advanced age. Kidney Int. 2017;91:1126–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alam NM, Douglas RM, Prusky GT. Treatment of age-related visual impairment with a peptide acting on mitochondria. Dis Model Mech. 2022;15.

  10. Tarantini S, et al. Treatment with the mitochondrial-targeted antioxidant peptide SS-31 rescues neurovascular coupling responses and cerebrovascular endothelial function and improves cognition in aged mice. Aging Cell. 2018;17.

  11. Roshanravan B, et al. In vivo mitochondrial ATP production is improved in older adult skeletal muscle after a single dose of elamipretide in a randomized trial. PLoS One. 2021;16:e0253849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Szeto HH, Birk AV. Serendipity and the discovery of novel compounds that restore mitochondrial plasticity. Clin Pharmacol Ther. 2014;96:672–83.

    Article  CAS  PubMed  Google Scholar 

  13. Jousilahti P, Vartiainen E, Tuomilehto J, Puska P. Sex, age, cardiovascular risk factors, and coronary heart disease: a prospective follow-up study of 14 786 middle-aged men and women in Finland. Circulation. 1999;99:1165–72.

    Article  CAS  PubMed  Google Scholar 

  14. North BJ, Sinclair DA. The intersection between aging and cardiovascular disease. Circ Res. 2012;110:1097–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. White MC, et al. Age and cancer risk: a potentially modifiable relationship. Am J Prev Med. 2014;46:S7–15.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Therakomen V, Petchlorlian A, Lakananurak N. Prevalence and risk factors of primary sarcopenia in community-dwelling outpatient elderly: a cross-sectional study. Sci Rep. 2020;10:19551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Venkatareddy M, et al. Estimating podocyte number and density using a single histologic section. J Am Soc Nephrol. 2014;25:1118–29.

    Article  PubMed  Google Scholar 

  18. Pharaoh G, et al. Targeting cPLA2 derived lipid hydroperoxides as a potential intervention for sarcopenia. Sci Rep. 2020;10:13968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. O'Sullivan ED, Hughes J, Ferenbach DA. Renal aging: causes and consequences. J Am Soc Nephrol. 2017;28:407–20.

    Article  CAS  PubMed  Google Scholar 

  20. Denic A, Glassock RJ, Rule AD. Structural and functional changes with the aging kidney. Adv Chronic Kidney Dis. 2016;23:19–28.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hodgin JB, et al. Glomerular aging and focal global glomerulosclerosis: a podometric perspective. J Am Soc Nephrol. 2015;26:3162–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Denic A, et al. The substantial loss of nephrons in healthy human kidneys with aging. J Am Soc Nephrol. 2017;28:313–20.

    Article  PubMed  Google Scholar 

  23. Wiggins J. Podocytes and glomerular function with aging. Semin Nephrol. 2009;29:587–93.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Camici M, Carpi A, Cini G, Galetta F, Abraham N. Podocyte dysfunction in aging--related glomerulosclerosis. Front Biosci (Schol Ed). 2011;3:995–1006.

    Article  PubMed  Google Scholar 

  25. Zhao W, et al. Elamipretide (SS-31) improves mitochondrial dysfunction, synaptic and memory impairment induced by lipopolysaccharide in mice. J Neuroinflammation. 2019;16:230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wan JJ, Qin Z, Wang PY, Sun Y, Liu X. Muscle fatigue: general understanding and treatment. Exp Mol Med. 2017;49:e384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nystoriak MA, Bhatnagar A. Cardiovascular effects and benefits of exercise. Front Cardiovasc Med. 2018;5:135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Albouaini K, Egred M, Alahmar A, Wright DJ. Cardiopulmonary exercise testing and its application. Postgrad Med J. 2007;83:675–82.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sakellariou GK, et al. Neuron-specific expression of CuZnSOD prevents the loss of muscle mass and function that occurs in homozygous CuZnSOD-knockout mice. FASEB J. 2014;28:1666–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jang YC, et al. Increased superoxide in vivo accelerates age-associated muscle atrophy through mitochondrial dysfunction and neuromuscular junction degeneration. FASEB J. 2010;24:1376–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Muller FL, et al. Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy. Free Radic Biol Med. 2006;40:1993–2004.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Rudy Stuppard for technical assistance with all aspects of this study. Elamipretide was provided by Stealth Biotherapeutics, Inc.

Funding

This work was supported by the National Institute of Health grants P01 AG001751 and T32 AG000057, the University of Washington Nathan Shock Center P30 AA013280, and the University of Washington Center for Translational Muscle Research P30 AR074990.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Marcinek.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campbell, M.D., Samuelson, A.T., Chiao, Y.A. et al. Intermittent treatment with elamipretide preserves exercise tolerance in aged female mice. GeroScience 45, 2245–2255 (2023). https://doi.org/10.1007/s11357-023-00754-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-00754-0

Keywords

Navigation