Skip to main content

Advertisement

Log in

Candidate rejuvenating factor GDF11 and tissue fibrosis: friend or foe?

  • Review
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Growth differentiation factor 11 (GDF11 or bone morphogenetic protein 11, BMP11) belongs to the transforming growth factor-β superfamily and is closely related to other family member—myostatin (also known as GDF8). GDF11 was firstly identified in 2004 due to its ability to rejuvenate the function of multiple organs in old mice. However, in the past few years, the heralded rejuvenating effects of GDF11 have been seriously questioned by many studies that do not support the idea that restoring levels of GDF11 in aging improves overall organ structure and function. Moreover, with increasing controversies, several other studies described the involvement of GDF11 in fibrotic processes in various organ setups. This review paper focuses on the GDF11 and its pro- or anti-fibrotic actions in major organs and tissues, with the goal to summarize our knowledge on its emerging role in regulating the progression of fibrosis in different pathological conditions, and to guide upcoming research efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jun J-I, Lau LF. Resolution of organ fibrosis. J Clin Invest. 128:97–107.

  2. Rosenbloom J. Narrative review: fibrotic diseases: cellular and molecular mechanisms and novel therapies. Ann Intern Med. 2010;152:159.

    PubMed  Google Scholar 

  3. Wynn T. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214:199–210.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wynn TA. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol. 2004;4:583–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci. 2014;71:549–74.

    CAS  PubMed  Google Scholar 

  6. Thannickal VJ, Toews GB, White ES, Lynch JP, Martinez FJ. Mechanisms of pulmonary fibrosis. Annu Rev Med. 2004;55:395–417.

    CAS  PubMed  Google Scholar 

  7. Tsukada S, Parsons CJ, Rippe RA. Mechanisms of liver fibrosis. Clin Chim Acta. 2006;364:33–60.

    CAS  PubMed  Google Scholar 

  8. Zeisberg M, Kalluri R. Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. Am J Phys Cell Phys. 2013;304:C216–25.

    CAS  Google Scholar 

  9. Gabbiani G. The myofibroblast in wound healing and fibrocontractive diseases. J Pathol. 2003;200:500–3.

    CAS  PubMed  Google Scholar 

  10. Karsdal MA, Manon-Jensen T, Genovese F, Kristensen JH, Nielsen MJ, Sand JMB, et al. Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. Am J Physiol-Gastrointest Liver Physiol Am Physiol Soc. 2015;308:G807–30.

    Google Scholar 

  11. Rosenbloom J, Mendoza FA, Jimenez SA. Strategies for anti-fibrotic therapies. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2013;1832:1088–103.

    CAS  Google Scholar 

  12. Thannickal VJ, Henke CA, Horowitz JC, Noble PW, Roman J, Sime PJ, et al. Matrix biology of idiopathic pulmonary fibrosis: a workshop report of the National Heart, Lung, and Blood Institute. Am J Pathol. Elsevier. 2014;184:1643–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kendall RT, Feghali-Bostwick CA. Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol. 2014;5:123. https://doi.org/10.3389/fphar.2014.00123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453:314–21.

    CAS  PubMed  Google Scholar 

  15. Stramer BM, Mori R, Martin P. The inflammation-fibrosis link? A Jekyll and Hyde role for blood cells during wound repair. J Invest Dermatol. 2007;127:1009–17.

    CAS  PubMed  Google Scholar 

  16. Anders H-J, Muruve DA. The inflammasomes in kidney disease. J Am Soc Nephrol JASN. 2011;22:1007–18.

    CAS  PubMed  Google Scholar 

  17. Koyama Y, Brenner DA. Liver inflammation and fibrosis. J Clin Invest. 127:55–64.

  18. Sanjuan MA, Dillon CP, Tait SWG, Moshiach S, Dorsey F, Connell S, et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature. 2007;450:1253–7.

    CAS  PubMed  Google Scholar 

  19. Harris HE, Raucci A. Alarmin(g) news about danger: workshop on innate danger signals and HMGB1. EMBO Rep. 2006;7:774–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Oppenheim JJ, Yang D. Alarmins: chemotactic activators of immune responses. Curr Opin Immunol. 2005;17:359–65.

    CAS  PubMed  Google Scholar 

  21. Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol. 2008;8:776–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Broekelmann TJ, Limper AH, Colby TV, McDonald JA. Transforming growth factor beta 1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis. Proc Natl Acad Sci U S A. 1991;88:6642–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nagaoka I, Trapnell BC, Crystal RG. Upregulation of platelet-derived growth factor-A and -B gene expression in alveolar macrophages of individuals with idiopathic pulmonary fibrosis. J Clin Invest. 1990;85:2023–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Varga J, Jimenez SA. Stimulation of normal human fibroblast collagen production and processing by transforming growth factor-β. Biochem Biophys Res Commun. 1986;138:974–80.

    CAS  PubMed  Google Scholar 

  25. Sandbo N, Dulin N. The actin cytoskeleton in myofibroblast differentiation: ultrastructure defining form and driving function. Transl Res. 2011;158:181–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Desmoulière A. Factors influencing myofibroblast differentiation during wound healing and fibrosis. Cell Biol Int. 1995;19:471–6.

    PubMed  Google Scholar 

  27. Distler JHW, Györfi A-H, Ramanujam M, Whitfield ML, Königshoff M, Lafyatis R. Shared and distinct mechanisms of fibrosis. Nat Rev Rheumatol Nat. Publishing Group. 2019;15:705–30.

    CAS  Google Scholar 

  28. Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat M-L, Gabbiani G. The myofibroblast: one function, multiple origins. Am J Pathol. Elsevier. 2007;170:1807–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. McAnulty RJ. Fibroblasts and myofibroblasts: their source, function and role in disease. Int J Biochem Cell Biol. 2007;39:666–71.

    CAS  PubMed  Google Scholar 

  30. Chen L-J, Ye H, Zhang Q, Li F-Z, Song L-J, Yang J, et al. Bleomycin induced epithelial-mesenchymal transition (EMT) in pleural mesothelial cells. Toxicol Appl Pharmacol. 2015;283:75–82.

    CAS  PubMed  Google Scholar 

  31. Humphreys BD, Lin S-L, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol. 2010;176:85–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Inoue T, Okada H, Takenaka T, Watanabe Y, Suzuki H. A case report suggesting the occurrence of epithelial-mesenchymal transition in obstructive nephropathy. Clin Exp Nephrol. 2009;13:385–8.

    PubMed  Google Scholar 

  33. Mubarak KK, Montes-Worboys A, Regev D, Nasreen N, Mohammed KA, Faruqi I, et al. Parenchymal trafficking of pleural mesothelial cells in idiopathic pulmonary fibrosis. Eur Respir J. 2012;39:133–40.

    CAS  PubMed  Google Scholar 

  34. Omenetti A, Porrello A, Jung Y, Yang L, Popov Y, Choi SS, et al. Hedgehog signaling regulates epithelial-mesenchymal transition during biliary fibrosis in rodents and humans. J Clin Invest. 2008;118:3331–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Abraham DJ, Eckes B, Rajkumar V, Krieg T. New developments in fibroblast and myofibroblast biology: implications for fibrosis and scleroderma. Curr Rheumatol Rep. 2007;9:136–43.

    CAS  PubMed  Google Scholar 

  36. Gilbane AJ, Denton CP, Holmes AM. Scleroderma pathogenesis: a pivotal role for fibroblasts as effector cells. Arthritis Res Ther. 2013;15:215.

    PubMed  PubMed Central  Google Scholar 

  37. Noble PW, Barkauskas CE, Jiang D. Pulmonary fibrosis: patterns and perpetrators. J Clin Invest. 2012;122:2756–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wright JL, Tazelaar HD, Churg A. Fibrosis with emphysema. Histopathology. 2011;58:517–24.

    PubMed  Google Scholar 

  39. Bocchino M, Agnese S, Fagone E, Svegliati S, Grieco D, Vancheri C, et al. Reactive oxygen species are required for maintenance and differentiation of primary lung fibroblasts in idiopathic pulmonary fibrosis. PLoS One. 2010;5:e14003.

    PubMed  PubMed Central  Google Scholar 

  40. Schaberg T, Rau M, Stephan H, Lode H. Increased number of alveolar macrophages expressing surface molecules of the CD11/CD18 family in sarcoidosis and idiopathic pulmonary fibrosis is related to the production of superoxide anions by these cells. Am Rev Respir Dis. 1993;147:1507–13.

    CAS  PubMed  Google Scholar 

  41. Ye Q, Dalavanga Y, Poulakis N, Sixt SU, Guzman J, Costabel U. Decreased expression of haem oxygenase-1 by alveolar macrophages in idiopathic pulmonary fibrosis. Eur Respir J. 2008;31:1030–6.

    CAS  PubMed  Google Scholar 

  42. Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med Camb Mass. 1994;1:71–81.

    CAS  PubMed  Google Scholar 

  43. Hashimoto N, Jin H, Liu T, Chensue SW, Phan SH. Bone marrow-derived progenitor cells in pulmonary fibrosis. J Clin Invest. 2004;113:243–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Postlethwaite AE, Shigemitsu H, Kanangat S. Cellular origins of fibroblasts: possible implications for organ fibrosis in systemic sclerosis. Curr Opin Rheumatol. 2004;16:733–8.

    PubMed  Google Scholar 

  45. Willis BC, Liebler JM, Luby-Phelps K, Nicholson AG, Crandall ED, du Bois RM, et al. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-β1. Am J Pathol. 2005;166:1321–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG, Brumwell AN, et al. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci U S A. 2006;103:13180–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Tanjore H, Xu XC, Polosukhin VV, Degryse AL, Li B, Han W, et al. Contribution of epithelial-derived fibroblasts to bleomycin-induced lung fibrosis. Am J Respir Crit Care Med. 2009;180:657–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Fintha A, Gasparics Á, Rosivall L, Sebe A. Therapeutic targeting of fibrotic epithelial-mesenchymal transition–an outstanding challenge. Front Pharmacol. 2019;10:388. https://doi.org/10.3389/fphar.2019.00388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rock JR, Barkauskas CE, Cronce MJ, Xue Y, Harris JR, Liang J, et al. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci U S A. 2011;108:E1475–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rout-Pitt N, Farrow N, Parsons D, Donnelley M. Epithelial mesenchymal transition (EMT): a universal process in lung diseases with implications for cystic fibrosis pathophysiology. Respir Res. 2018;19:136.

    PubMed  PubMed Central  Google Scholar 

  51. Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest. 2002;110:341–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest Am Soc Clin Invest. 2003;112:1776–84.

    CAS  Google Scholar 

  53. Fragiadaki M, Mason RM. Epithelial-mesenchymal transition in renal fibrosis–evidence for and against. Int J Exp Pathol. 2011;92:143–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kisseleva T, Brenner DA. Fibrogenesis of parenchymal organs. Proc Am Thorac Soc Am Thor Soc – PATS. 2008;5:338–42.

    Google Scholar 

  55. Duffield JS, Humphreys BD. Origin of new cells in the adult kidney: results from genetic labeling techniques. Kidney Int. 2011;79:494–501.

    PubMed  Google Scholar 

  56. Koesters R, Kaissling B, Lehir M, Picard N, Theilig F, Gebhardt R, et al. Tubular overexpression of transforming growth factor-beta1 induces autophagy and fibrosis but not mesenchymal transition of renal epithelial cells. Am J Pathol. 2010;177:632–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sato Y, Yanagita M. Resident fibroblasts in the kidney: a major driver of fibrosis and inflammation. Inflamm Regen. 2017;37:17.

    PubMed  PubMed Central  Google Scholar 

  58. Humphreys BD. Mechanisms of renal fibrosis. Annu Rev Physiol. 2018;80:309–26.

    CAS  PubMed  Google Scholar 

  59. Grande MT, Sánchez-Laorden B, López-Blau C, De Frutos CA, Boutet A, Arévalo M, et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med. 2015;21:989–97.

    CAS  PubMed  Google Scholar 

  60. Hertig A, Anglicheau D, Verine J, Pallet N, Touzot M, Ancel P-Y, et al. Early epithelial phenotypic changes predict graft fibrosis. J Am Soc Nephrol JASN. 2008;19:1584–91.

    PubMed  Google Scholar 

  61. Huang S, Susztak K. Epithelial plasticity versus EMT in kidney fibrosis. Trends Mol Med. 2016;22:4–6.

    CAS  PubMed  Google Scholar 

  62. Asada N, Takase M, Nakamura J, Oguchi A, Asada M, Suzuki N, et al. Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice. J Clin Invest. 2011;121:3981–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Paliege A, Rosenberger C, Bondke A, Sciesielski L, Shina A, Heyman SN, et al. Hypoxia-inducible factor-2alpha-expressing interstitial fibroblasts are the only renal cells that express erythropoietin under hypoxia-inducible factor stabilization. Kidney Int. 2010;77:312–8.

    CAS  PubMed  Google Scholar 

  64. Zhang Y, Zhu X, Huang X, Wei X, Zhao D, Jiang L, Zhao X, Du Y. Advances in understanding the effects of erythropoietin on renal fibrosis. Front Med. 2020;7:47. https://doi.org/10.3389/fmed.2020.00047.

    Article  Google Scholar 

  65. Fan X, Gaur U, Sun L, Yang D, Yang M. The growth differentiation factor 11 (GDF11) and myostatin (MSTN) in tissue specific aging. Mech Ageing Dev. 2017;164:108–12.

    CAS  PubMed  Google Scholar 

  66. Biernacka A, Dobaczewski M, Frangogiannis NG. TGF-β signaling in fibrosis. Growth Factors Chur Switz. 2011;29:196–202.

    CAS  Google Scholar 

  67. Graham-Brown MPM, Patel AS, Stensel DJ, March DS, Marsh A-M, McAdam J, McCann GP, Burton JO. Imaging of myocardial fibrosis in patients with end-stage renal disease: current limitations and future possibilities. Biomed Res Int 2017:e5453606. https:/doi.org/10.1155/2017/5453606. https://www.hindawi.com/journals/bmri/2017/5453606/

  68. Krenning G, Zeisberg EM, Kalluri R. The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol. 2010;225:631–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Rog-Zielinska EA, Norris RA, Kohl P, Markwald R. The living scar--cardiac fibroblasts and the injured heart. Trends Mol Med. 2016;22:99–114.

    PubMed  PubMed Central  Google Scholar 

  70. Forte E, Furtado MB, Rosenthal N. The interstitium in cardiac repair: role of the immune–stromal cell interplay. Nat Rev Cardiol. Nature Publishing Group. 2018;15:601–16.

    CAS  PubMed  Google Scholar 

  71. Ma Z-G, Yuan Y-P, Wu H-M, Zhang X, Tang Q-Z. Cardiac fibrosis: new insights into the pathogenesis. Int J Biol Sci. 2018;14:1645–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT, D’Antoni ML, Debuque R, et al. Revisiting cardiac cellular composition. Circ Res. 2016;118:400–9.

    CAS  PubMed  Google Scholar 

  73. Chen WCW, Baily JE, Corselli M, Díaz ME, Sun B, Xiang G, et al. Human myocardial pericytes: multipotent mesodermal precursors exhibiting cardiac specificity. Stem Cells Dayt Ohio. 2015;33:557–73.

    CAS  Google Scholar 

  74. Dulauroy S, Di Carlo SE, Langa F, Eberl G, Peduto L. Lineage tracing and genetic ablation of ADAM12(+) perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nat Med. 2012;18:1262–70.

    CAS  PubMed  Google Scholar 

  75. Chang Y, Li H, Guo Z. Mesenchymal stem cell-like properties in fibroblasts. Cell Physiol Biochem Int J Exp Cell PhysiolBiochem Pharmacol. 2014;34:703–14.

    CAS  Google Scholar 

  76. Furtado MB, Nim HT, Boyd SE, Rosenthal NA. View from the heart: cardiac fibroblasts in development, scarring and regeneration. Development Oxford University Press for The Company of Biologists Limited. 2016;143:387–97.

    CAS  PubMed  Google Scholar 

  77. Liu Y, Hu Z-F, Liao H-H, Liu W, Liu J, Ma Z-G, et al. Toll-like receptor 5 deficiency attenuates interstitial cardiac fibrosis and dysfunction induced by pressure overload by inhibiting inflammation and the endothelial-mesenchymal transition. Biochim Biophys Acta. 2015;1852:2456–66.

    CAS  PubMed  Google Scholar 

  78. Ranjan P, Kumari R, Verma SK. Cardiac fibroblasts and cardiac fibrosis: precise role of exosomes. Front Cell Dev Biol. 2019;7:318. https://doi.org/10.3389/fcell.2019.00318.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med. 2007;13:952–61.

    CAS  Google Scholar 

  80. Fang M, Xiang F-L, Braitsch CM, Yutzey KE. Epicardium-derived fibroblasts in heart development and disease. J Mol Cell Cardiol. 2016;91:23–7.

    CAS  PubMed  Google Scholar 

  81. Ruiz-Villalba A, Simón AM, Pogontke C, Castillo MI, Abizanda G, Pelacho B, et al. Interacting resident epicardium-derived fibroblasts and recruited bone marrow cells form myocardial infarction scar. J Am Coll Cardiol. 2015;65:2057–66.

    PubMed  Google Scholar 

  82. Bersini S, Gilardi M, Mora M, Krol S, Arrigoni C, Candrian C, et al. Tackling muscle fibrosis: from molecular mechanisms to next generation engineered models to predict drug delivery. Adv Drug Deliv Rev. 2018;129:64–77.

    CAS  PubMed  Google Scholar 

  83. Mahdy MAA. Skeletal muscle fibrosis: an overview. Cell Tissue Res. 2019;375:575–88.

    PubMed  Google Scholar 

  84. Goodpaster BH, Thaete FL, Kelley DE. Thigh adipose tissue distribution is associated with insulin resistance in obesity and in type 2 diabetes mellitus. Am J Clin Nutr. 2000;71:885–92.

    CAS  PubMed  Google Scholar 

  85. Greco AV, Mingrone G, Giancaterini A, Manco M, Morroni M, Cinti S, et al. Insulin resistance in morbid obesity: reversal with intramyocellular fat depletion. Diabetes. 2002;51:144–51.

    CAS  PubMed  Google Scholar 

  86. Järvinen TA, Kääriäinen M, Järvinen M, Kalimo H. Muscle strain injuries. Curr Opin Rheumatol. 2000;12:155–61.

    PubMed  Google Scholar 

  87. Serrano AL, Muñoz-Cánoves P. Regulation and dysregulation of fibrosis in skeletal muscle. Exp Cell Res. 2010;316:3050–8.

    CAS  PubMed  Google Scholar 

  88. Delaney K, Kasprzycka P, Ciemerych MA, Zimowska M. The role of TGF-β1 during skeletal muscle regeneration. Cell Biol Int. 2017;41:706–15.

    CAS  PubMed  Google Scholar 

  89. Järvinen TAH, Józsa L, Kannus P, Järvinen TLN, Järvinen M. Organization and distribution of intramuscular connective tissue in normal and immobilized skeletal muscles. An immunohistochemical, polarization and scanning electron microscopic study. J Muscle Res Cell Motil. 2002;23:245–54.

    PubMed  Google Scholar 

  90. Murphy S, Ohlendieck K. The biochemical and mass spectrometric profiling of the dystrophin complexome from skeletal muscle. Comput Struct Biotechnol J. 2015;14:20–7. https://doi.org/10.1016/j.csbj.2015.11.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Prazeres PHDM, Turquetti AOM, Azevedo PO, Barreto RSN, Miglino MA, Mintz A, et al. Perivascular cell αv integrins as a target to treat skeletal muscle fibrosis. Int J Biochem Cell Biol. 2018;99:109–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Perandini LA, Chimin P, Lutkemeyer D d S, Câmara NOS. Chronic inflammation in skeletal muscle impairs satellite cells function during regeneration: can physical exercise restore the satellite cell niche? FEBS J. 2018;285:1973–84.

    CAS  PubMed  Google Scholar 

  93. Tidball JG. Inflammatory processes in muscle injury and repair. Am J Phys Regul Integr Comp Phys. 2005;288:R345–53.

    CAS  Google Scholar 

  94. Tidball JG, Welc SS. Macrophage-derived IGF-1 is a potent coordinator of myogenesis and inflammation in regenerating muscle. Mol Ther. 2015;23:1134–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Braga TT, Agudelo JSH, Camara NOS. Macrophages during the fibrotic process: M2 as friend and foe. Front Immunol. 2015;6:602. https://doi.org/10.3389/fimmu.2015.00602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lemos DR, Babaeijandaghi F, Low M, Chang C-K, Lee ST, Fiore D, et al. Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nat Med. 2015;21:786–94.

    CAS  PubMed  Google Scholar 

  97. Murray IR, Gonzalez ZN, Baily J, Dobie R, Wallace RJ, Mackinnon AC, et al. αv integrins on mesenchymal cells regulate skeletal and cardiac muscle fibrosis. Nat Commun. 2017;8:1118.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Cholok D, Lee E, Lisiecki J, Agarwal S, Loder S, Ranganathan K, et al. Traumatic muscle fibrosis: from pathway to prevention. J Trauma Acute Care Surg. 2017;82:174–84.

    PubMed  PubMed Central  Google Scholar 

  99. Ciciliot S, Schiaffino S. Regeneration of mammalian skeletal muscle. Basic mechanisms and clinical implications. Curr Pharm Des. 2010;16:906–14.

    CAS  PubMed  Google Scholar 

  100. Ding J, Tredget EE. Cellular and molecular mechanism of dermal fibrosis following burn injury, and exploration of therapeutic approaches. J Aesthetic Reconstr Surg. 2016;1:3. https://doi.org/10.4172/2472-1905.10003.

    Article  Google Scholar 

  101. Nejati R, Kovacic D, Slominski A. Neuro-immune-endocrine functions of the skin: an overview. Expert Rev Dermatol. 2013;8:581–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res Eur Chir Forsch Rech Chir Eur. 2012;49:35–43.

    CAS  Google Scholar 

  103. Glim JE, van Egmond M, Niessen FB, Everts V, Beelen RHJ. Detrimental dermal wound healing: what can we learn from the oral mucosa? Wound Repair Regen Off Publ Wound Heal Soc Eur Tissue Repair Soc. 2013;21:648–60.

    Google Scholar 

  104. Karppinen S-M, Heljasvaara R, Gullberg D, Tasanen K, Pihlajaniemi T. Toward understanding scarless skin wound healing and pathological scarring. F1000Research. 2019;8:787.

    Google Scholar 

  105. Soehnlein O, Lindbom L. Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol. 2010;10:427–39.

    CAS  PubMed  Google Scholar 

  106. Ridiandries A, Tan JTM, Bursill CA. The role of chemokines in wound healing. Int J Mol Sci. 2018;19(10):3217. https://doi.org/10.3390/ijms19103217.

    Article  CAS  PubMed Central  Google Scholar 

  107. Su Y, Richmond A. Chemokine regulation of neutrophil infiltration of skin wounds. Adv Wound Care. 2015;4:631–40.

    Google Scholar 

  108. Driskell RR, Lichtenberger BM, Hoste E, Kretzschmar K, Simons BD, Charalambous M, et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature. 2013;504:277–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Driskell RR, Watt FM. Understanding fibroblast heterogeneity in the skin. Trends Cell Biol. 2015;25:92–9.

    CAS  PubMed  Google Scholar 

  110. Hinz B. The role of myofibroblasts in wound healing. Curr Res Transl Med. 2016;64:171–7.

    CAS  PubMed  Google Scholar 

  111. Ng CP, Hinz B, Swartz MA. Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J Cell Sci The Company of Biologists Ltd. 2005;118:4731–9.

    CAS  PubMed  Google Scholar 

  112. Vallée A, Lecarpentier Y. TGF-β in fibrosis by acting as a conductor for contractile properties of myofibroblasts. Cell Biosci. 2019;9:98.

    PubMed  PubMed Central  Google Scholar 

  113. Jagadeesan J, Bayat A. Transforming growth factor beta (TGFβ) and keloid disease. Int J Surg. 2007;5:278–85.

    PubMed  Google Scholar 

  114. Cañedo-Dorantes L, Cañedo-Ayala M. Skin Acute Wound healing: a comprehensive review. Int J Inflam. 2019:e3706315. https://doi.org/10.1155/2019/3706315. https://www.hindawi.com/journals/iji/2019/3706315/

  115. Marshall CD, Hu MS, Leavitt T, Barnes LA, Lorenz HP, Longaker MT. Cutaneous scarring: basic science, current treatments, and future directions. Adv Wound Care. 2018;7:29–45.

    Google Scholar 

  116. Gauglitz GG, Korting HC, Pavicic T, Ruzicka T, Jeschke MG. Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol Med Camb Mass. 2011;17:113–25.

    CAS  PubMed  Google Scholar 

  117. Lichtman MK, Otero-Vinas M, Falanga V. Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis. Wound Repair Regen Off Publ Wound Heal Soc Eur Tissue Repair Soc. 2016;24:215–22.

    Google Scholar 

  118. Ogawa R, Akaishi S, Kuribayashi S, Miyashita T. Keloids and hypertrophic scars can now be cured completely: recent progress in our understanding of the pathogenesis of keloids and hypertrophic scars and the most promising current therapeutic strategy. J Nippon Med Sch. 2016;83:46–53.

    CAS  PubMed  Google Scholar 

  119. Khansa I, Harrison B, Janis JE. Evidence-Based scar management: how to improve results with technique and technology. Plast Reconstr Surg. 2016;138:165S–78S.

    CAS  PubMed  Google Scholar 

  120. Luong VH, Chino T, Oyama N, Matsushita T, Sasaki Y, Ogura D, et al. Blockade of TGF-β/Smad signaling by the small compound HPH-15 ameliorates experimental skin fibrosis. Arthritis Res Ther. 2018;20:46.

    PubMed  PubMed Central  Google Scholar 

  121. Walton KL, Johnson KE, Harrison CA. Targeting TGF-β Mediated SMAD signaling for the prevention of fibrosis. Front Pharmacol. 2017;8:461. https://doi.org/10.3389/fphar.2017.00461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Crafts TD, Jensen AR, Blocher-Smith EC, Markel TA. Vascular endothelial growth factor: therapeutic possibilities and challenges for the treatment of ischemia. Cytokine. 2015;71:385–93.

    CAS  PubMed  Google Scholar 

  123. Zubair M, Ahmad J. Role of growth factors and cytokines in diabetic foot ulcer healing: a detailed review. Rev Endocr Metab Disord. 2019;20:207–17.

    PubMed  Google Scholar 

  124. Fallowfield JA, Kendall TJ, Iredale JP. Reversal of fibrosis: no longer a pipe dream? Clin Liver Dis. 2006;10:481–97.

    PubMed  Google Scholar 

  125. Farci P, Roskams T, Chessa L, Peddis G, Mazzoleni AP, Scioscia R, et al. Long-term benefit of interferon α therapy of chronic hepatitis D: regression of advanced hepatic fibrosis. Gastroenterology. Elsevier. 2004;126:1740–9.

    CAS  PubMed  Google Scholar 

  126. Ismail MH, Pinzani M. Reversal of liver fibrosis. Saudi J Gastroenterol. Medknow Publications. 2009;15:72.

    PubMed  PubMed Central  Google Scholar 

  127. Cordero-Espinoza L, Huch M. The balancing act of the liver: tissue regeneration versus fibrosis. J Clin Invest Am Soc Clin Invest. 2018;128:85–96.

    Google Scholar 

  128. Ahmad A, Ahmad R. Understanding the mechanism of hepatic fibrosis and potential therapeutic approaches. Saudi J Gastroenterol Off J Saudi Gastroenterol Assoc. 2012;18:155–67.

    Google Scholar 

  129. Weiskirchen R, Weiskirchen S, Tacke F. Recent advances in understanding liver fibrosis: bridging basic science and individualized treatment concepts. F.F1000Res. 20187:F1000 Faculty Rev-921. https://doi.org/10.12688/f1000research.14841.1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6024236/

  130. Karlmark KR, Weiskirchen R, Zimmermann HW, Gassler N, Ginhoux F, Weber C, et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatol Baltim Md. 2009;50:261–74.

    CAS  Google Scholar 

  131. Meijer C, Wiezer MJ, Diehl AM, Schouten HJ, Schouten HJ, Meijer S, et al. Kupffer cell depletion by CI2MDP-liposomes alters hepatic cytokine expression and delays liver regeneration after partial hepatectomy. Liver. 2000;20:66–77.

    CAS  PubMed  Google Scholar 

  132. Li Y, Lua I, French SW, Asahina K. Role of TGF-β signaling in differentiation of mesothelial cells to vitamin A-poor hepatic stellate cells in liver fibrosis. Am J Physiol Gastrointest Liver Physiol. 2016;310:G262–72.

    PubMed  Google Scholar 

  133. Yin C, Evason KJ, Asahina K, Stainier DYR. Hepatic stellate cells in liver development, regeneration, and cancer. J Clin Invest. 2013;123:1902–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Carpino G, Renzi A, Franchitto A, Cardinale V, Onori P, Reid L, Alvaro D, Gaudio E. Stem/progenitor cell niches involved in hepatic and biliary regeneration. Stem Cells Int. 2016;2016:3658013. https://doi.org/10.1155/2016/3658013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Köhn-Gaone J, Gogoi-Tiwari J, Ramm GA, Olynyk JK, Tirnitz-Parker JEE. The role of liver progenitor cells during liver regeneration, fibrogenesis, and carcinogenesis. Am J Physiol Gastrointest Liver Physiol. 2016;310:G143–54.

    PubMed  Google Scholar 

  136. Blachier M, Leleu H, Peck-Radosavljevic M, Valla D-C, Roudot-Thoraval F. The burden of liver disease in Europe: a review of available epidemiological data. J Hepatol. 2013;58:593–608.

    PubMed  Google Scholar 

  137. Stål P. Liver fibrosis in non-alcoholic fatty liver disease-diagnostic challenge with prognostic significance. World J Gastroenterol: WJG. 2015;21:11077–87.

    PubMed  Google Scholar 

  138. Li S-N, Wu J-F. TGF-β/SMAD signaling regulation of mesenchymal stem cells in adipocyte commitment. Stem Cell Res Ther. 2020;11(1):41. https://doi.org/10.1186/s13287-020-1552-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol. 2016;8(5):a021873. https://doi.org/10.1101/cshperspect.a021873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wang RN, Green J, Wang Z, Deng Y, Qiao M, Peabody M, et al. Bone morphogenetic protein (BMP) signaling in development and human diseases. Genes Dis. 2014;1:87–105.

    PubMed  PubMed Central  Google Scholar 

  141. Assoian RK, Komoriya A, Meyers CA, Miller DM, Sporn MB. Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem. 1983;258:7155–60.

    CAS  PubMed  Google Scholar 

  142. Roberts AB, Anzano MA, Lamb LC, Smith JM, Sporn MB. New class of transforming growth factors potentiated by epidermal growth factor: isolation from non-neoplastic tissues. Proc Natl Acad Sci U S A. 1981;78:5339–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Massagué J, Seoane J, Wotton D. Smad transcription factors. Genes Dev. 2005;19:2783–810.

    PubMed  Google Scholar 

  144. Katagiri T, Watabe T. Bone morphogenetic proteins. Cold Spring Harb Perspect Biol. 2016;8:a021899.

    PubMed  PubMed Central  Google Scholar 

  145. Ramirez H, Patel SB, Pastar I. The role of TGFβ signaling in wound epithelialization. Adv Wound Care. 2014;3:482–91.

    Google Scholar 

  146. Akhurst RJ, Derynck R. TGF-beta signaling in cancer--a double-edged sword. Trends Cell Biol. 2001;11:S44–51.

    CAS  PubMed  Google Scholar 

  147. Nawshad A, Hay ED. TGFbeta3 signaling activates transcription of the LEF1 gene to induce epithelial mesenchymal transformation during mouse palate development. J Cell Biol. 2003;163:1291–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Border WA, Okuda S, Languino LR, Sporn MB, Ruoslahti E. Suppression of experimental glomerulonephritis by antiserum against transforming growth factor beta 1. Nature. 1990;346:371–4.

    CAS  PubMed  Google Scholar 

  149. Jiménez SA, Castro SV, Piera-Velázquez S. Role of growth factors in the pathogenesis of tissue fibrosis in systemic sclerosis. Curr Rheumatol Rev. 2010;6:283–94.

    PubMed  Google Scholar 

  150. Meng X-M, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12:325–38.

    CAS  PubMed  Google Scholar 

  151. Pohlers D, Brenmoehl J, Löffler I, Müller CK, Leipner C, Schultze-Mosgau S, et al. TGF-β and fibrosis in different organs—molecular pathway imprints. Biochim Biophys Acta (BBA) - Mol Basis Dis. 1792;2009:746–56.

    Google Scholar 

  152. Sime PJ, Xing Z, Graham FL, Csaky KG, Gauldie J. Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. J Clin Invest. 1997;100:768–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Goumenos DS, Tsamandas AC, Oldroyd S, Sotsiou F, Tsakas S, Petropoulou C, et al. Transforming growth factor-beta(1) and myofibroblasts: a potential pathway towards renal scarring in human glomerular disease. Nephron. 2001;87:240–8.

    CAS  PubMed  Google Scholar 

  154. Molina-Molina M, Serrano-Mollar A, Bulbena O, Fernandez-Zabalegui L, Closa D, Marin-Arguedas A, et al. Losartan attenuates bleomycin induced lung fibrosis by increasing prostaglandin E2 synthesis. Thorax. 2006;61:604–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Fan JM, Ng YY, Hill PA, Nikolic-Paterson DJ, Mu W, Atkins RC, et al. Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro. Kidney Int. 1999;56:1455–67.

    CAS  PubMed  Google Scholar 

  156. Lijnen PJ, Petrov VV, Fagard RH. Induction of cardiac fibrosis by transforming growth factor-beta(1). Mol Genet Metab. 2000;71:418–35.

    CAS  PubMed  Google Scholar 

  157. Presser LD, McRae S, Waris G. Activation of TGF-β1 promoter by hepatitis C virus-induced AP-1 and Sp1: role of TGF-β1 in hepatic stellate cell activation and invasion. PLoS ONE [Internet]. 2013 [cited 2020 May 25]; 8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578869/

  158. Milani S, Herbst H, Schuppan D, Stein H, Surrenti C. Transforming growth factors beta 1 and beta 2 are differentially expressed in fibrotic liver disease. Am J Pathol. 1991;139:1221–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Bernasconi P, Di Blasi C, Mora M, Morandi L, Galbiati S, Confalonieri P, et al. Transforming growth factor-beta1 and fibrosis in congenital muscular dystrophies. Neuromuscul Disord NMD. 1999;9:28–33.

    CAS  PubMed  Google Scholar 

  160. Ferreira RR, da Silva Abreu R, Vilar-Pereira G, Degrave W, Meuser-Batista M, Ferreira NVC, et al. TGF-β inhibitor therapy decreases fibrosis and stimulates cardiac improvement in a pre-clinical study of chronic Chagas’ heart disease. PLoS Negl Trop Dis. Public Library of Science. 2019;13:e0007602.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. George J, Roulot D, Koteliansky VE, Bissell DM. In vivo inhibition of rat stellate cell activation by soluble transforming growth factor beta type II receptor: a potential new therapy for hepatic fibrosis. Proc Natl Acad Sci U S A. 1999;96:12719–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Kim D-Y, Lee S-H, Fu Y, Jing F, Kim W-Y, Hong S-B, Song J-A, Choe H, Ryu HJ, Kim M, Lim D, Kim M-S, Yun C-O, et al. Del-1, an endogenous inhibitor of TGF-β activation, attenuates fibrosis. Front Immunol [Internet]. Frontiers; 2020 [cited 2020 Apr 30]; 11. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2020.00068/full

  163. Kuwahara F, Kai H, Tokuda K, Kai M, Takeshita A, Egashira K, Imaizumi T. Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation. 2002;106:130–5. https://doi.org/10.1161/01.cir.0000020689.12472.e0.

    Article  CAS  PubMed  Google Scholar 

  164. Wei Y, Kim TJ, Peng DH, Duan D, Gibbons DL, Yamauchi M, et al. Fibroblast-specific inhibition of TGF-β1 signaling attenuates lung and tumor fibrosis. J Clin Invest Am Soc Clin Invest. 2017;127:3675–88.

    Google Scholar 

  165. Stone RC, Pastar I, Ojeh N, Chen V, Liu S, Garzon KI, et al. Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res. 2016;365:495–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Bujor AM, Asano Y, Haines P, Lafyatis R, Trojanowska M. The c-Abl tyrosine kinase controls protein kinase Cδ-induced Fli-1 phosphorylation in human dermal fibroblasts. Arthritis Rheum. 2011;63:1729–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Caraci F, Gili E, Calafiore M, Failla M, La Rosa C, Crimi N, et al. TGF-beta1 targets the GSK-3beta/beta-catenin pathway via ERK activation in the transition of human lung fibroblasts into myofibroblasts. Pharmacol Res. 2008;57:274–82.

    CAS  PubMed  Google Scholar 

  168. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425:577–84.

    CAS  PubMed  Google Scholar 

  169. Urist MR. Bone: formation by autoinduction. Science. 1965;150:893–9.

    CAS  PubMed  Google Scholar 

  170. Wozney JM. The bone morphogenetic protein family and osteogenesis. Mol Reprod Dev. 1992;32:160–7.

    CAS  PubMed  Google Scholar 

  171. Hogan BL. Bone morphogenetic proteins in development. Curr Opin Genet Dev. 1996;6:432–8.

    CAS  PubMed  Google Scholar 

  172. Wagner DO, Sieber C, Bhushan R, Börgermann JH, Graf D, Knaus P. BMPs: from bone to body morphogenetic proteins. Sci Signal. 2010;3:mr1.

    PubMed  Google Scholar 

  173. Herrera B, Addante A, Sánchez A. BMP Signalling at the crossroad of liver fibrosis and regeneration. Int J Mol Sci [Internet]. 2017 [cited 2020 May 7]; 19. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795989/

  174. Weiskirchen R, Meurer SK. BMP-7 counteracting TGF-beta1 activities in organ fibrosis. Front Biosci. Landmark Ed. 2013;18:1407–34.

    CAS  Google Scholar 

  175. Bragdon B, Moseychuk O, Saldanha S, King D, Julian J, Nohe A. Bone morphogenetic proteins: a critical review. Cell Signal. 2011;23:609–20.

    CAS  PubMed  Google Scholar 

  176. Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors Chur Switz. 2004;22:233–41.

    CAS  Google Scholar 

  177. Jeffery TK, Upton PD, Trembath RC, Morrell NW. BMP4 inhibits proliferation and promotes myocyte differentiation of lung fibroblasts via Smad1 and JNK pathways. Am J Physiol-Lung Cell Mol Physiol Am Physiol Soc. 2005;288:L370–8.

    CAS  Google Scholar 

  178. Rivera-Feliciano J, Tabin CJ. Bmp2 instructs cardiac progenitors to form the heart-valve-inducing field. Dev Biol. 2006;295:580–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Zhang H, Bradley A. Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development. The Company of Biologists Ltd. 1996;122:2977–86.

    CAS  PubMed  Google Scholar 

  180. Blázquez-Medela AM, Jumabay M, Boström KI. Beyond the Bone: bone morphogenetic protein (BMP) signaling in adipose tissue. Obes Rev Off J Int Assoc Study Obes. 2019;20:648–58.

    Google Scholar 

  181. Jin W, Takagi T, Kanesashi S, Kurahashi T, Nomura T, Harada J, et al. Schnurri-2 controls BMP-dependent adipogenesis via interaction with Smad proteins. Dev Cell. 2006;10:461–71.

    CAS  PubMed  Google Scholar 

  182. Gerjevic LN, Liu N, Lu S, Harrison-Findik DD. Alcohol activates TGF-beta but inhibits BMP receptor-mediated Smad signaling and Smad4 binding to hepcidin promoter in the liver. Int J Hepatol [Internet]. 2012 [cited 2020 May 7]; 2012. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202137/

  183. Nakatsuka R, Taniguchi M, Hirata M, Shiota G, Sato K. Transient expression of bone morphogenic protein-2 in acute liver injury by carbon tetrachloride. J Biochem (Tokyo). 2006;141(1):113–9. https://doi.org/10.1093/jb/mvm012.

    Article  Google Scholar 

  184. Shen H, Huang G, Hadi M, Choy P, Zhang M, Minuk GY, et al. Transforming growth factor-β1 downregulation of Smad1 gene expression in rat hepatic stellate cells. Am J Physiol-Gastrointest Liver Physiol Am Physiol Soc. 2003;285:G539–46.

    CAS  Google Scholar 

  185. Wang S, Sun A, Li L, Zhao G, Jia J, Wang K, et al. Up-regulation of BMP-2 antagonizes TGF-β1/ROCK-enhanced cardiac fibrotic signalling through activation of Smurf1/Smad6 complex. J Cell Mol Med. 2012;16:2301–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Yang Y-L, Ju H-Z, Liu S-F, Lee T-C, Shih Y-W, Chuang L-Y, et al. BMP-2 suppresses renal interstitial fibrosis by regulating epithelial–mesenchymal transition. J Cell Biochem. 2011;112:2558–65.

    CAS  PubMed  Google Scholar 

  187. Yang Y-L, Liu Y-S, Chuang L-Y, Guh J-Y, Lee T-C, Liao T-N, et al. Bone morphogenetic protein-2 antagonizes renal interstitial fibrosis by promoting catabolism of type i transforming growth factor-β receptors. Endocrinology. Oxford Academic. 2009;150:727–40.

    CAS  PubMed  Google Scholar 

  188. De Langhe E, Cailotto F, De Vooght V, Aznar-Lopez C, Vanoirbeek JA, Luyten FP, Lories RJU. Enhanced endogenous bone morphogenetic protein signaling protects against bleomycin induced pulmonary fibrosis. Respir Res [Internet]. 2015 [cited 2020 May 25]; 16. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4364322/

  189. Shlyonsky V, Soussia IB, Naeije R, Mies F. Opposing effects of bone morphogenetic protein-2 and endothelin-1 on lung fibroblast chloride currents. Am J Respir Cell Mol Biol. 2011;45(6):1154–60. https://doi.org/10.1165/rcmb.2010-0443OC.

    Article  CAS  PubMed  Google Scholar 

  190. Selman M, Pardo A, Kaminski N. Idiopathic pulmonary fibrosis: aberrant recapitulation of developmental programs? PLoS Med. Public Library of Science. 2008;5:e62.

    PubMed  PubMed Central  Google Scholar 

  191. Gao X, Cao Y, Yang W, Duan C, Aronson JF, Rastellini C, et al. BMP2 inhibits TGF-β-induced pancreatic stellate cell activation and extracellular matrix formation. Am J Physiol Gastrointest Liver Physiol. 2013;304:G804–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Gao X, Cao Y, Staloch DA, Gonzales MA, Aronson JF, Chao C, et al. Bone morphogenetic protein signaling protects against cerulein-induced pancreatic fibrosis. PLoS One. 2014;9:e89114.

    PubMed  PubMed Central  Google Scholar 

  193. Liang P, Huang X, Jian B, Long J, Yang X, Liu Z, Lei S. Bone morphogenetic protein 2 is involved in the proliferation and collagen synthesis of human hyperplastic scar fibroblasts. 2016.

  194. Liu W, Selever J, Wang D, Lu M-F, Moses KA, Schwartz RJ, et al. Bmp4 signaling is required for outflow-tract septation and branchial-arch artery remodeling. Proc Natl Acad Sci. National Academy of Sciences. 2004;101:4489–94.

    CAS  PubMed  Google Scholar 

  195. Selever J, Liu W, Lu M-F, Behringer RR, Martin JF. Bmp4 in limb bud mesoderm regulates digit pattern by controlling AER development. Dev Biol. 2004;276:268–79.

    CAS  PubMed  Google Scholar 

  196. Zhang Y, Zhang Z, Zhao X, Yu X, Hu Y, Geronimo B, et al. A new function of BMP4: dual role for BMP4 in regulation of Sonic hedgehog expression in the mouse tooth germ. Development. The Company of Biologists Ltd. 2000;127:1431–43.

    CAS  PubMed  Google Scholar 

  197. Winnier G, Blessing M, Labosky PA, Hogan BL. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 1995;9:2105–16.

    CAS  PubMed  Google Scholar 

  198. Lawson KA, Dunn NR, Roelen BAJ, Zeinstra LM, Davis AM, Wright CVE, et al. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 1999;13:424–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Molloy EL, Adams A, Moore JB, Masterson JC, Madrigal-Estebas L, Mahon BP, et al. BMP4 induces an epithelial–mesenchymal transition-like response in adult airway epithelial cells. Growth Factors. Taylor & Francis. 2008;26:12–22.

    CAS  PubMed  Google Scholar 

  200. Pegorier S, Campbell GA, Kay AB, Lloyd CM. Bone morphogenetic protein (BMP)-4 and BMP-7 regulate differentially transforming growth factor (TGF)-β1 in normal human lung fibroblasts (NHLF). Respir Res. 2010;11:85.

    PubMed  PubMed Central  Google Scholar 

  201. Yao M, Li J, Yuan S, Zhu X, Hu Z, Li Q, et al. Role of the arecoline/YAP1/BMP4 pathway in promoting endothelial-mesenchymal transition in oral submucous fibrosis. J Oral Pathol Med. 2020;49:305–10.

    CAS  PubMed  Google Scholar 

  202. Mano Y, Yoshio S, Shoji H, Tomonari S, Aoki Y, Aoyanagi N, et al. Bone morphogenetic protein 4 provides cancer-supportive phenotypes to liver fibroblasts in patients with hepatocellular carcinoma. J Gastroenterol. 2019;54:1007–18.

    CAS  PubMed  Google Scholar 

  203. Omar R, Yang J, Alrushaid S, Burczynski FJ, Minuk GY, Gong Y. Inhibition of BMP4 and alpha smooth muscle actin expression in LX-2 hepatic stellate cells by BMP4-siRNA lipid based nanoparticle. J Pharm Pharm Sci. 2018;21:119–34.

    CAS  PubMed  Google Scholar 

  204. Fan J, Shen H, Sun Y, Li P, Burczynski F, Namaka M, et al. Bone morphogenetic protein 4 mediates bile duct ligation induced liver fibrosis through activation of Smad1 and ERK1/2 in rat hepatic stellate cells. J Cell Physiol. 2006;207:499–505.

    CAS  PubMed  Google Scholar 

  205. Lu J-W, Hsia Y, Yang W-Y, Lin Y-I, Li C-C, Tsai T-F, et al. Identification of the common regulators for hepatocellular carcinoma induced by hepatitis B virus X antigen in a mouse model. Carcinogenesis. 2012;33:209–19.

    CAS  PubMed  Google Scholar 

  206. Zhong W, Shen W-F, Ning B-F, Hu P-F, Lin Y, Yue H-Y, et al. Inhibition of extracellular signal-regulated kinase 1 by adenovirus mediated small interfering RNA attenuates hepatic fibrosis in rats. Hepatol Baltim Md. 2009;50:1524–36.

    CAS  Google Scholar 

  207. Azibani F, Fazal L, Chatziantoniou C, Samuel J-L, Delcayre C. La fibrose dans l’hypertension artérielle : une histoire d’équilibre. Ann Cardiol Angeiol. 2012;61:150–5.

    CAS  Google Scholar 

  208. Sun B, Huo R, Sheng Y, Li Y, Xie X, Chen C, et al. Bone morphogenetic protein-4 mediates cardiac hypertrophy, apoptosis, and fibrosis in experimentally pathological cardiac hypertrophy. Hypertension. 2013;61:352–60.

    CAS  PubMed  Google Scholar 

  209. Tominaga T, Abe H, Ueda O, Goto C, Nakahara K, Murakami T, et al. Activation of bone morphogenetic protein 4 signaling leads to glomerulosclerosis that mimics diabetic nephropathy. J Biol Chem. 2011;286:20109–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Kluk MW, Ji Y, Shin EH, Amrani O, Onodera J, Jackson WM, et al. Fibroregulation of mesenchymal progenitor cells by BMP-4 after traumatic muscle injury. J Orthop Trauma. 2012;26:693–8.

    PubMed  Google Scholar 

  211. de Mara CS, Duarte ASS, Sartori-Cintra AR, Luzo ACM, Saad STO, Coimbra IB. Chondrogenesis from umbilical cord blood cells stimulated with BMP-2 and BMP-6. Rheumatol Int. 2013;33:121–8.

    CAS  PubMed  Google Scholar 

  212. Hughes FJ, Collyer J, Stanfield M, Goodman SA. The effects of bone morphogenetic protein-2, -4, and -6 on differentiation of rat osteoblast cells in vitro. Endocrinology. 1995;136:2671–7.

    CAS  PubMed  Google Scholar 

  213. Ye F, Xu H, Yin H, Zhao X, Li D, Zhu Q, et al. The role of BMP6 in the proliferation and differentiation of chicken cartilage cells. PLoS One. Public Libr Sci. 2019;14:e0204384.

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Sugiura K, Su Y-Q, Eppig JJ. Does bone morphogenetic protein 6 (BMP6) affect female fertility in the mouse? Biol Reprod. Oxford Academic. 2010;83:997–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Dendooven A, van Oostrom O, van der Giezen DM, Willem Leeuwis J, Snijckers C, Joles JA, et al. Loss of endogenous bone morphogenetic protein-6 aggravates renal fibrosis. Am J Pathol. 2011;178:1069–79.

    PubMed  PubMed Central  Google Scholar 

  216. Yan J, Yang S, Zhang J, Zhu T. BMP6 reverses TGF-β1-induced changes in HK-2 cells: implications for the treatment of renal fibrosis. Acta Pharmacol Sin. 2009;30:994–1000.

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Yano R, Golbar HM, Izawa T, Sawamoto O, Kuwamura M, Yamate J. Participation of bone morphogenetic protein (BMP)-6 and osteopontin in cisplatin (CDDP)-induced rat renal fibrosis. Exp Toxicol Pathol. 2015;67:99–107.

    CAS  PubMed  Google Scholar 

  218. Arndt S, Wacker E, Dorn C, Koch A, Saugspier M, Thasler WE, et al. Enhanced expression of BMP6 inhibits hepatic fibrosis in non-alcoholic fatty liver disease. Gut. 2015;64:973–81.

    CAS  PubMed  Google Scholar 

  219. Verhamme FM, De Smet EG, Van Hooste W, Delanghe J, Verleden SE, Joos GF, et al. Bone morphogenetic protein 6 (BMP-6) modulates lung function, pulmonary iron levels and cigarette smoke-induced inflammation. Mucosal Immunol. Nature Publishing Group. 2019;12:340–51.

    CAS  PubMed  Google Scholar 

  220. Arndt S, Karrer S, Hellerbrand C, Bosserhoff AK. Bone morphogenetic protein-6 inhibits fibrogenesis in scleroderma offering treatment options for fibrotic skin disease. J Invest Dermatol. 2019;139:1914–24 e6.

    CAS  PubMed  Google Scholar 

  221. Kaiser S, Schirmacher P, Philipp A, Protschka M, Moll I, Nicol K, et al. Induction of bone morphogenetic protein-6 in skin wounds. Delayed reepitheliazation and scar formation in BMP-6 overexpressing transgenic mice. J Invest Dermatol. Elsevier. 1998;111:1145–52.

    CAS  PubMed  Google Scholar 

  222. Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, et al. BMP-7 counteracts TGF-β1–induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med. Nature Publishing Group. 2003;9:964–8.

    CAS  PubMed  Google Scholar 

  223. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119:1420–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Li RX, Yiu WH, Tang SCW. Role of bone morphogenetic protein-7 in renal fibrosis. Front Physiol [Internet]. Frontiers; 2015 [cited 2020 Apr 30]; 6. Available from: https://www.frontiersin.org/articles/10.3389/fphys.2015.00114/full

  225. Li X, An G, Wang Y, Liang D, Zhu Z, Lian X, Niu P, Guo C, Tian L. Anti-fibrotic effects of bone morphogenetic protein-7-modified bone marrow mesenchymal stem cells on silica-induced pulmonary fibrosis. Exp Mol Pathol. 2017;102(1):70–7. https://doi.org/10.1016/j.yexmp.2016.12.010.

    Article  CAS  PubMed  Google Scholar 

  226. Weiskirchen R, Meurer SK, Gressner OA, Herrmann J, Borkham-Kamphorst E, Gressner AM. BMP-7 as antagonist of organ fibrosis. Front Biosci. Landmark Ed. 2009;14:4992–5012.

    CAS  Google Scholar 

  227. Meng X-M, Chung ACK, Lan HY. Role of the TGF-β/BMP-7/Smad pathways in renal diseases. Clin Sci. Portland Press. 2013;124:243–54.

    CAS  Google Scholar 

  228. Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K. Two major Smad pathways in TGF-beta superfamily signalling. Genes Cells Devoted Mol Cell Mech. 2002;7:1191–204.

    CAS  Google Scholar 

  229. Miyazono K, Kamiya Y, Morikawa M. Bone morphogenetic protein receptors and signal transduction. J Biochem (Tokyo). 2010;147:35–51.

    CAS  Google Scholar 

  230. Mueller TD, Nickel J. Promiscuity and specificity in BMP receptor activation. FEBS Lett. 2012;586:1846–59.

    CAS  PubMed  Google Scholar 

  231. Wang S, Hirschberg R. Bone morphogenetic protein-7 signals opposing transforming growth factor beta in mesangial cells. J Biol Chem. 2004;279:23200–6.

    CAS  PubMed  Google Scholar 

  232. Yan X, Liu Z, Chen Y. Regulation of TGF-beta signaling by Smad7. Acta Biochim Biophys Sin. 2009;41:263–72.

    CAS  PubMed  Google Scholar 

  233. Kinoshita K, Iimuro Y, Otogawa K, Saika S, Inagaki Y, Nakajima Y, et al. Adenovirus-mediated expression of BMP-7 suppresses the development of liver fibrosis in rats. Gut. 2007;56:706–14.

    CAS  PubMed  Google Scholar 

  234. Zou G-L, Zuo S, Lu S, Hu R-H, Lu Y-Y, Yang J, et al. Bone morphogenetic protein-7 represses hepatic stellate cell activation and liver fibrosis via regulation of TGF-β/Smad signaling pathway. World J Gastroenterol. 2019;25:4222–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Chen B-L, Peng J, Li Q-F, Yang M, Wang Y, Chen W. Exogenous bone morphogenetic protein-7 reduces hepatic fibrosis in Schistosoma japonicum-infected mice via transforming growth factor-β/Smad signaling. World J Gastroenterol: WJG. 2013;19:1405–15.

    CAS  PubMed  Google Scholar 

  236. Guo J, Lin Q, Shao Y, Rong L, Zhang D. BMP-7 suppresses excessive scar formation by activating the BMP-7/Smad1/5/8 signaling pathway. Mol Med Rep. 2017;16:1957–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Hao Z-M, Cai M, Lv Y-F, Huang Y-H, Li H-H. Oral Administration of recombinant adeno-associated virus-mediated bone morphogenetic protein-7 suppresses CCl4-induced hepatic fibrosis in mice. Mol Ther. 2012;20:2043–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Wang L-P, Dong J-Z, Xiong L-J, Shi K-Q, Zou Z-L, Zhang S-N, et al. BMP-7 attenuates liver fibrosis via regulation of epidermal growth factor receptor. Int J Clin Exp Pathol. 2014;7:3537–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Ivanac-Janković R, Ćorić M, Furić-Čunko V, Lovičić V, Bašić-Jukić N, Kes P. BMP-7 protein expression is downregulated in human diabetic nephropathy. Acta Clin Croat. 2015;54:164–8.

    PubMed  Google Scholar 

  240. Lee S-Y, Kim SI, Choi ME. Therapeutic targets for treating fibrotic kidney diseases. Transl Res J Lab Clin Med. 2015;165:512–30.

    CAS  Google Scholar 

  241. Chen X, Xu J, Jiang B, Liu D. Bone Morphogenetic protein-7 antagonizes myocardial fibrosis induced by atrial fibrillation by restraining transforming growth factor-β (TGF-β)/Smads signaling. Med Sci Monit Int Med J Exp Clin Res. 2016;22:3457–68.

    CAS  Google Scholar 

  242. Murray LA, Hackett TL, Warner SM, Shaheen F, Argentieri RL, Dudas P, Farrell FX, Knight DA. BMP-7 does not protect against bleomycin-induced lung or skin fibrosis. PLoS ONE [Internet]. 2008 [cited 2020 Aug 20]; 3. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2603595/

  243. Kang Q, Sun MH, Cheng H, Peng Y, Montag AG, Deyrup AT, Jiang W, Luu HH, Luo J, Szatkowski JP, Vanichakarn P, Park JY, Li Y, et al. Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther. 2004;11(17):1312–20. https://doi.org/10.1038/sj.gt.3302298 (Nature Publishing Group).

    Article  CAS  PubMed  Google Scholar 

  244. Lopez-Coviella I, Follettie MT, Mellott TJ, Kovacheva VP, Slack BE, Diesl V, et al. Bone morphogenetic protein 9 induces the transcriptome of basal forebrain cholinergic neurons. Proc Natl Acad Sci U S A. 2005;102:6984–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Truksa J, Peng H, Lee P, Beutler E. Bone morphogenetic proteins 2, 4, and 9 stimulate murine hepcidin 1 expression independently of Hfe, transferrin receptor 2 (Tfr2), and IL-6. Proc Natl Acad Sci U S A. 2006;103:10289–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Breitkopf-Heinlein K, Meyer C, König C, Gaitantzi H, Addante A, Thomas M, et al. BMP-9 interferes with liver regeneration and promotes liver fibrosis. Gut. BMJ Publishing Group. 2017;66:939–54.

    CAS  PubMed  Google Scholar 

  247. Munoz Felix JM, Salgado CM. A better understanding of the role of TGF-β family members in tissue fibrosis. J Cell Signal [Internet]. 2016 [cited 2020 May 11]; 01. Available from: https://www.omicsonline.org/open-access/a-better-understanding-of-the-role-of-tgf-family-members-in-tissuefibrosis.php?aid=84072

  248. Addante A, Roncero C, Almalé L, Lazcanoiturburu N, García-Álvaro M, Fernández M, Sanz J, Hammad S, Nwosu ZC, Lee S-J, Fabregat I, Dooley S, Ten Dijke P, et al. Bone morphogenetic protein 9 as a key regulator of liver progenitor cells in DDC-induced cholestatic liver injury. Liver Int Off J Int Assoc Study Liver. 2018;38(9):1664–75. https://doi.org/10.1111/liv.13879.

    Article  CAS  Google Scholar 

  249. Li P, Li Y, Zhu L, Yang Z, He J, Wang L, et al. Targeting secreted cytokine BMP9 gates the attenuation of hepatic fibrosis. Biochim Biophys Acta (BBA) - Mol Basis Dis. 1864;2018:709–20.

    Google Scholar 

  250. Li Q, Liu B, Breitkopf-Heinlein K, Weng H, Jiang Q, Dong P, et al. Adenovirus-mediated overexpression of bone morphogenetic protein-9 promotes methionine choline deficiency-induced non-alcoholic steatohepatitis in non-obese mice. Mol Med Rep. Spandidos Publications. 2019;20:2743–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Muñoz-Félix JM, Cuesta C, Perretta-Tejedor N, Subileau M, López-Hernández FJ, López-Novoa JM, et al. Identification of bone morphogenetic protein 9 (BMP9) as a novel profibrotic factor in vitro. Cell Signal. 2016;28:1252–61.

    PubMed  Google Scholar 

  252. Ly T, Agnès D-C, Christine M, Laurent G, Amélie C, Carole P, et al. Selective BMP-9 inhibition partially protects against experimental pulmonary hypertension. Circ Res Am Heart Assoc. 2019;124:846–55.

    Google Scholar 

  253. Chen X, Orriols M, Walther FJ, Laghmani EH, Hoogeboom AM, Hogen-Esch ACB, Hiemstra PS, Folkerts G, Goumans M-JTH, ten Dijke P, Morrell NW, Wagenaar GTM. Bone morphogenetic protein 9 protects against neonatal hyperoxia-induced impairment of alveolarization and pulmonary inflammation. Front Physiol [Internet]. Frontiers; 2017 [cited 2020 May 25]; 8. Available from: https://www.frontiersin.org/articles/10.3389/fphys.2017.00486/full

  254. Liu R, Hu W, Li X, Pu D, Yang G, Liu H, Tan M, Zhu D. Association of circulating BMP9 with coronary heart disease and hypertension in Chinese populations. BMC Cardiovasc Disord. 2019;19(1):131. https://doi.org/10.1186/s12872-019-1095-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Morine KJ, Qiao X, York S, Natov PS, Paruchuri V, Zhang Y, et al. Bone morphogenetic protein 9 reduces cardiac fibrosis and improves cardiac function in heart failure. Circulation. 2018;138:513–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Coleman CM, Loredo GA, Lo CW, Tuan RS. Correlation of GDF5 and connexin 43 mRNA expression during embryonic development. Anat Rec A Discov Mol Cell Evol Biol. 2003;275:1117–21.

    PubMed  Google Scholar 

  257. Nishitoh H, Ichijo H, Kimura M, Matsumoto T, Makishima F, Yamaguchi A, et al. Identification of type I and type II serine/threonine kinase receptors for growth/differentiation factor-5. J Biol Chem. 1996;271:21345–52.

    CAS  PubMed  Google Scholar 

  258. Storm EE, Huynh TV, Copeland NG, Jenkins NA, Kingsley DM, Lee SJ. Limb alterations in brachypodism mice due to mutations in a new member of the TGF beta-superfamily. Nature. 1994;368:639–43.

    CAS  PubMed  Google Scholar 

  259. Chen H, Yong W, Ren S, Shen W, He Y, Cox KA, et al. Overexpression of bone morphogenetic protein 10 in myocardium disrupts cardiac postnatal hypertrophic growth. J Biol Chem. 2006;281:27481–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Nakahara T, Tominaga K, Koseki T, Yamamoto M, Yamato K, Fukuda J, et al. Growth/differentiation factor-5 induces growth arrest and apoptosis in mouse B lineage cells with modulation by Smad. Cell Signal. 2003;15:181–7.

    CAS  PubMed  Google Scholar 

  261. Yamashita H, Shimizu A, Kato M, Nishitoh H, Ichijo H, Hanyu A, et al. Growth/differentiation factor-5 induces angiogenesisin vivo. Exp Cell Res. 1997;235:218–26.

    CAS  PubMed  Google Scholar 

  262. Zeng Q, Li X, Beck G, Balian G, Shen FH. Growth and differentiation factor-5 (GDF-5) stimulates osteogenic differentiation and increases vascular endothelial growth factor (VEGF) levels in fat-derived stromal cells in vitro. Bone. 2007;40:374–81.

    CAS  PubMed  Google Scholar 

  263. Zaidi SHE, Huang Q, Momen A, Riazi A, Husain M. Growth differentiation factor 5 regulates cardiac repair after myocardial infarction. J Am Coll Cardiol. 2010;55:135–43.

    CAS  PubMed  Google Scholar 

  264. Yao Y, Zhang J, Ye D, Tan D, Peng J, Xie M, et al. Left-right determination factor is down-regulated in fibrotic renal tissue of human hydronephrosis. BJU Int. John Wiley & Sons, Ltd. 2011;107:1002–8.

    CAS  PubMed  Google Scholar 

  265. McPherron AC. Metabolic functions of myostatin and GDF11. Immunol Endocr Metab Agents Med Chem. 2010;10:217–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Sharma M, McFarlane C, Kambadur R, Kukreti H, Bonala S, Srinivasan S. Myostatin: expanding horizons. IUBMB Life. 2015;67:589–600.

    CAS  PubMed  Google Scholar 

  267. Dong J, Dong Y, Chen Z, Mitch WE, Zhang L. The pathway to muscle fibrosis depends on myostatin stimulating the differentiation of fibro/adipogenic progenitor cells in chronic kidney disease. Kidney Int. 2017;91:119–28.

    CAS  PubMed  Google Scholar 

  268. Bogdanovich S, Krag TOB, Barton ER, Morris LD, Whittemore L-A, Ahima RS, et al. Functional improvement of dystrophic muscle by myostatin blockade. Nature. 2002;420:418–21.

    CAS  PubMed  Google Scholar 

  269. Li ZB, Zhang J, Wagner KR. Inhibition of myostatin reverses muscle fibrosis through apoptosis. J Cell Sci. The Company of Biologists Ltd. 2012;125:3957–65.

    CAS  Google Scholar 

  270. Li ZB, Kollias HD, Wagner KR. Myostatin directly regulates skeletal muscle fibrosis. J Biol Chem. 2008;283:19371–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  271. McCroskery S, Thomas M, Platt L, Hennebry A, Nishimura T, McLeay L, et al. Improved muscle healing through enhanced regeneration and reduced fibrosis in myostatin-null mice. J Cell Sci. 2005;118:3531–41.

    CAS  PubMed  Google Scholar 

  272. Nakatani M, Takehara Y, Sugino H, Matsumoto M, Hashimoto O, Hasegawa Y, et al. Transgenic expression of a myostatin inhibitor derived from follistatin increases skeletal muscle mass and ameliorates dystrophic pathology in mdx mice. FASEB J Off Publ Fed Am Soc Exp Biol. 2008;22:477–87.

    CAS  Google Scholar 

  273. Ohno Y, Matsuba Y, Hashimoto N, Sugiura T, Ohira Y, Yoshioka T, et al. Suppression of myostatin stimulates regenerative potential of injured antigravitational soleus muscle in mice under unloading condition. Int J Med Sci. 2016;13:680–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Biesemann N, Mendler L, Kostin S, Wietelmann A, Borchardt T, Braun T. Myostatin induces interstitial fibrosis in the heart via TAK1 and p38. Cell Tissue Res. 2015;361:779–87.

    CAS  PubMed  Google Scholar 

  275. Breitbart A, Auger-Messier M, Molkentin JD, Heineke J. Myostatin from the heart: local and systemic actions in cardiac failure and muscle wasting. Am J Physiol Heart Circ Physiol. 2011;300:H1973–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Morissette MR, Stricker JC, Rosenberg MA, Buranasombati C, Levitan EB, Mittleman MA, et al. Effects of myostatin deletion in aging mice. Aging Cell. 2009;8:573–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Caligiuri A, Delogu W, Provenzano A, Galastri S, Pinzani M, Marra F. T-26 The myostatin system is expressed in the liver and its activation mediates profibrogenic actions via c-Jun N-terminal kinase. Dig Liver Dis. 2013;45:S21–2.

    Google Scholar 

  278. Delogu W, Caligiuri A, Provenzano A, Rosso C, Bugianesi E, Coratti A, et al. Myostatin regulates the fibrogenic phenotype of hepatic stellate cells via c-jun N-terminal kinase activation. Dig Liver. Dis Elsevier. 2019;51:1400–8.

    CAS  Google Scholar 

  279. Nishikawa H, Enomoto H, Ishii A, Iwata Y, Miyamoto Y, Ishii N, et al. Elevated serum myostatin level is associated with worse survival in patients with liver cirrhosis. J Cachexia Sarcopenia Muscle. 2017;8:915–25.

    PubMed  PubMed Central  Google Scholar 

  280. Katoh Y, Katoh M. Comparative integromics on BMP/GDF family. Int J Mol Med. 2006;17:951–5.

    CAS  PubMed  Google Scholar 

  281. Nakashima M, Toyono T, Akamine A, Joyner A. Expression of growth/differentiation factor 11, a new member of the BMP/TGFbeta superfamily during mouse embryogenesis. Mech Dev. 1999;80:185–9.

    CAS  PubMed  Google Scholar 

  282. Zhang Y, Wei Y, Liu D, Liu F, Li X, Pan L, et al. Role of growth differentiation factor 11 in development, physiology and disease. Oncotarget. 2017;8:81604–16.

    PubMed  PubMed Central  Google Scholar 

  283. Khalil AM, Dotimas H, Kahn J, Lamerdin JE, Hayes DB, Gupta P, et al. Differential binding activity of TGF-β family proteins to select TGF-β receptors. J Pharmacol Exp Ther Am Soc Pharmacol Exp Ther. 2016;358:423–30.

    CAS  Google Scholar 

  284. Camici GG, Savarese G, Akhmedov A, Lüscher TF. Molecular mechanism of endothelial and vascular aging: implications for cardiovascular disease. Eur Heart J. 2015;36:3392–403.

    CAS  PubMed  Google Scholar 

  285. Rochette L, Zeller M, Cottin Y, Vergely C. Growth and differentiation factor 11 (GDF11): Functions in the regulation of erythropoiesis and cardiac regeneration. Pharmacol Ther. 2015;156:26–33.

    CAS  PubMed  Google Scholar 

  286. Demontis F, Patel VK, Swindell WR, Perrimon N. Inter-tissue Control of the nucleolus via a myokine-dependent longevity pathway. Cell Rep. 2014;7:1481–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Wang Z, Dou M, Liu F, Jiang P, Ye S, Ma L, Cao H, Du X, Sun P, Su N, Lin F, Zhang R, Li C. GDF11 induces differentiation and apoptosis and inhibits migration of C17.2 neural stem cells via modulating MAPK signaling pathway. PeerJ [Internet]. 2018 [cited 2020 May 12]; 6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6128255/

  288. Esquela AF, Lee S-J. Regulation of metanephric kidney development by growth/differentiation factor 11. Dev Biol. 2003;257(2):356–70. https://doi.org/10.1016/s0012-1606(03)00100-3.

    Article  CAS  PubMed  Google Scholar 

  289. Harmon EB, Apelqvist AA, Smart NG, Gu X, Osborne DH, Kim SK. GDF11 modulates NGN3+ islet progenitor cell number and promotes beta-cell differentiation in pancreas development. Dev Camb Engl. 2004;131:6163–74.

    CAS  Google Scholar 

  290. McPherron AC, Huynh TV, Lee S-J. Redundancy of myostatin and growth/differentiation factor 11 function. BMC Dev Biol. 2009;9:24.

    PubMed  PubMed Central  Google Scholar 

  291. Wu H-H, Ivkovic S, Murray RC, Jaramillo S, Lyons KM, Johnson JE, et al. Autoregulation of neurogenesis by GDF11. Neuron. 2003;37:197–207.

    CAS  PubMed  Google Scholar 

  292. Bajikar SS, Wang C-C, Borten MA, Pereira EJ, Atkins KA, Janes KA. Tumor suppressor inactivation of GDF11 occurs by precursor sequestration in triple-negative breast cancer. Dev Cell. 2017;43:418–35 e13.

    CAS  PubMed  PubMed Central  Google Scholar 

  293. Gerardo-Ramírez M, Lazzarini-Lechuga R, Hernández-Rizo S, Jiménez-Salazar JE, Simoni-Nieves A, García-Ruiz C, et al. GDF11 exhibits tumor suppressive properties in hepatocellular carcinoma cells by restricting clonal expansion and invasion. Biochim Biophys Acta (BBA) - Mol Basis Dis. 1865;2019:1540–54.

    Google Scholar 

  294. Qin X, Kuang H, Chen L, Wei S, Yu D, Liang F. Coexpression of growth differentiation factor 11 and reactive oxygen species in metastatic oral cancer and its role in inducing the epithelial to mesenchymal transition. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;123:697–706.

    PubMed  Google Scholar 

  295. Simoni-Nieves A, Gerardo-Ramírez M, Pedraza-Vázquez G, Chávez-Rodríguez L, Bucio L, Souza V, Miranda-Labra RU, Gomez-Quiroz LE, Gutiérrez-Ruiz MC. GDF11 implications in cancer biology and metabolism. Facts and controversies. Front Oncol [Internet]. 2019 [cited 2020 Apr 15]; 9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6803553/

  296. Yokoe T, Ohmachi T, Inoue H, Mimori K, Tanaka F, Kusunoki M, Mori M. Clinical significance of growth differentiation factor 11 in colorectal cancer. Int J Oncol. 2007;31(5):1097–101.

    CAS  PubMed  Google Scholar 

  297. Loffredo FS, Steinhauser ML, Jay SM, Gannon J, Pancoast JR, Yalamanchi P, et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell. 2013;153:828–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  298. Sinha M, Jang YC, Oh J, Khong D, Wu EY, Manohar R, et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science. 2014;344:649–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  299. Li H, Li Y, Xiang L, Zhang J, Zhu B, Xiang L, et al. GDF11 attenuates development of type 2 diabetes via improvement of islet β-cell function and survival. Diabetes. 2017;66:1914–27.

    CAS  PubMed  Google Scholar 

  300. Finkenzeller G, Stark GB, Strassburg S. Growth differentiation factor 11 supports migration and sprouting of endothelial progenitor cells. J Surg Res. 2015;198:50–6.

    CAS  PubMed  Google Scholar 

  301. Katsimpardi L, Litterman NK, Schein PA, Miller CM, Loffredo FS, Wojtkiewicz GR, et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science. 2014;344:630–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  302. Zhang W, Guo Y, Li B, Zhang Q, Liu J, Gu G, et al. GDF11 rejuvenates cerebrovascular structure and function in an animal model of Alzheimer’s disease. J Alzheimers Dis. 2018;62:807–19.

    CAS  PubMed  Google Scholar 

  303. Ozek C, Krolewski RC, Buchanan SM, Rubin LL. Growth differentiation factor 11 treatment leads to neuronal and vascular improvements in the hippocampus of aged mice. Sci Rep. Nat Publ Group. 2018;8:17293.

    PubMed  PubMed Central  Google Scholar 

  304. Egerman MA, Cadena SM, Gilbert JA, Meyer A, Nelson HN, Swalley SE, et al. GDF11 increases with age and inhibits skeletal muscle regeneration. Cell Metab. 2015;22:164–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  305. Egerman MA, Glass DJ. The role of GDF11 in aging and skeletal muscle, cardiac and bone homeostasis. Crit Rev Biochem Mol Biol. 2019;54:174–83.

    PubMed  Google Scholar 

  306. Hinken AC, Powers JM, Luo G, Holt JA, Billin AN, Russell AJ. Lack of evidence for GDF11 as a rejuvenator of aged skeletal muscle satellite cells. Aging Cell. 2016;15:582–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  307. Rodgers BD, Eldridge JA. Reduced circulating GDF11 is unlikely responsible for age-dependent changes in mouse heart, muscle, and brain. Endocrinology. 2015;156:3885–8.

    CAS  PubMed  Google Scholar 

  308. Smith SC, Zhang X, Zhang X, Gross P, Starosta T, Mohsin S, et al. GDF11 Does not rescue aging-related pathological hypertrophy. Circ Res. 2015;117:926–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  309. Hammers DW, Merscham-Banda M, Hsiao JY, Engst S, Hartman JJ, Sweeney HL. Supraphysiological levels of GDF11 induce striated muscle atrophy. EMBO Mol Med. John Wiley & Sons, Ltd. 2017;9:531–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  310. Harper SC, Jaslyn J, Giulia B, Huaqing Z, Tao W, Markus W, et al. GDF11 decreases pressure overload–induced hypertrophy, but can cause severe cachexia and premature death. Circ Res. American Heart Association. 2018;123:1220–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  311. Jones JE, Cadena SM, Gong C, Wang X, Chen Z, Wang SX, et al. Supraphysiologic administration of GDF11 induces cachexia in part by upregulating GDF15. Cell Rep Elsevier. 2018;22:1522–30.

    CAS  Google Scholar 

  312. Onodera K, Sugiura H, Yamada M, Koarai A, Fujino N, Yanagisawa S, et al. Decrease in an anti-ageing factor, growth differentiation factor 11, in chronic obstructive pulmonary disease. Thorax. 2017;72:893–904.

    PubMed  Google Scholar 

  313. Kwapiszewska G, Gungl A, Wilhelm J, Marsh LM, Thekkekara Puthenparampil H, Sinn K, et al. Transcriptome profiling reveals the complexity of pirfenidone effects in idiopathic pulmonary fibrosis. Eur Respir J. 2018;52:1800564.

    CAS  PubMed  Google Scholar 

  314. Zhang Y, Li Q, Liu D, Huang Q, Cai G, Cui S, et al. GDF11 improves tubular regeneration after acute kidney injury in elderly mice. Sci Rep. Nature Publishing Group. 2016;6:1–15.

    Google Scholar 

  315. Pons M, Koniaris LG, Moe SM, Gutierrez JC, Esquela-Kerscher A, Zimmers TA. GDF11 induces kidney fibrosis, renal cell epithelial-to-mesenchymal transition and kidney dysfunction and failure. Surgery. 2018;164:262–73.

    PubMed  PubMed Central  Google Scholar 

  316. Du G-Q, Shao Z-B, Wu J, Yin W-J, Li S-H, Wu J, et al. Targeted myocardial delivery of GDF11 gene rejuvenates the aged mouse heart and enhances myocardial regeneration after ischemia–reperfusion injury. Basic Res Cardiol. 2016;112:7.

    PubMed  Google Scholar 

  317. Poggioli T, Vujic A, Yang P, Macias-Trevino C, Uygur A, Loffredo FS, et al. Circulating growth differentiation factor 11/8 levels decline with age. Circ Res. 2016;118:29–37.

    CAS  PubMed  Google Scholar 

  318. Zimmers TA, Jiang Y, Wang M, Liang TW, Rupert JE, Au ED, et al. Exogenous GDF11 induces cardiac and skeletal muscle dysfunction and wasting. Basic Res Cardiol. 2017;112:48.

    PubMed  PubMed Central  Google Scholar 

  319. Cingolani OH, Yang X-P, Liu Y-H, Villanueva M, Rhaleb N-E, Carretero OA. Reduction of cardiac fibrosis decreases systolic performance without affecting diastolic function in hypertensive rats. Hypertens Dallas Tex 1979. 2004;43:1067–73.

    CAS  Google Scholar 

  320. Heymans S, Schroen B, Vermeersch P, Milting H, Gao F, Kassner A, et al. Increased cardiac expression of tissue inhibitor of metalloproteinase-1 and tissue inhibitor of metalloproteinase-2 is related to cardiac fibrosis and dysfunction in the chronic pressure-overloaded human heart. Circulation. 2005;112:1136–44.

    CAS  PubMed  Google Scholar 

  321. Xia Y, Lee K, Li N, Corbett D, Mendoza L, Frangogiannis NG. Characterization of the inflammatory and fibrotic response in a mouse model of cardiac pressure overload. Histochem Cell Biol. 2009;131:471–81.

    CAS  PubMed  Google Scholar 

  322. Garbern J, Kristl AC, Bassaneze V, Vujic A, Schoemaker H, Sereda R, et al. Analysis of Cre-mediated genetic deletion of Gdf11 in cardiomyocytes of young mice. Am J Physiol-Heart Circ Physiol. 2019;317:H201–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  323. Pugach EK, Richmond PA, Azofeifa JG, Dowell RD, Leinwand LA. Prolonged Cre expression driven by the α-myosin heavy chain promoter can be cardiotoxic. J Mol Cell Cardiol. Elsevier. 2015;86:54–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  324. Jin Q, Qiao C, Li J, Xiao B, Li J, Xiao X. A GDF11/myostatin inhibitor, GDF11 propeptide-Fc, increases skeletal muscle mass and improves muscle strength in dystrophic mdx mice. Skelet Muscle [Internet]. 2019 [cited 2020 Apr 27]; 9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6537384/

  325. Gutpell KM, Hrinivich WT, Hoffman LM. Skeletal muscle fibrosis in the mdx/utrn+/- mouse validates its suitability as a murine model of duchenne muscular dystrophy. PLoS ONE. 2015;10(1):e0117306. https://doi.org/10.1371/journal.pone.0117306.

    Article  PubMed  PubMed Central  Google Scholar 

  326. Pessina P, Cabrera D, Morales MG, Riquelme CA, Gutiérrez J, Serrano AL, Brandan E, Muñoz-Cánoves P. Novel and optimized strategies for inducing fibrosis in vivo: focus on Duchenne Muscular Dystrophy. Skelet Muscle. 2014;4:7. https://doi.org/10.1186/2044-5040-4-7.

    Article  PubMed  PubMed Central  Google Scholar 

  327. Rinaldi F, Zhang Y, Mondragon-Gonzalez R, Harvey J, Perlingeiro R. Treatment with rGDF11 does not improve the dystrophic muscle pathology of mdx mice. Skelet Muscle. 2016; 6.

  328. Zhou Y, Sharma N, Dukes D, Myzithras MB, Gupta P, Khalil A, et al. GDF11 Treatment attenuates the recovery of skeletal muscle function after injury in older rats. AAPS J. 2017;19:431–7.

    CAS  PubMed  Google Scholar 

  329. Li Q, Jiao L, Shao Y, Li M, Gong M, Zhang Y, et al. Topical GDF11 accelerates skin wound healing in both type 1 and 2 diabetic mouse models. Biochem Biophys Res Commun. 2020;529:7–14.

    CAS  PubMed  Google Scholar 

  330. Rochette L, Mazini L, Meloux A, Zeller M, Cottin Y, Vergely C, Malka G. Anti-aging effects of GDF11 on skin. Int J Mol Sci [Internet]. 2020 [cited 2020 Jul 21]; 21. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177281/

  331. Tito A, Barbulova A, Zappelli C, Leone M, Ruvo M, Mercurio FA, Chambery A, Russo R, Colucci MG, Apone F. The growth differentiation factor 11 is involved in skin fibroblast ageing and is induced by a preparation of peptides and sugars derived from plant cell cultures. Mol Biotechnol. 2019;61(3):209–20. https://doi.org/10.1007/s12033-019-00154-w.

    Article  CAS  PubMed  Google Scholar 

  332. Dai Z, Song G, Balakrishnan A, Yang T, Yuan Q, Möbus S, Weiss A-C, Bentler M, Zhu J, Jiang X, Shen X, Bantel H, Jaeckel E, et al. Growth differentiation factor 11 attenuates liver fibrosis via expansion of liver progenitor cells. Gut [Internet]. BMJ Publishing Group; 2019 [cited 2020 Apr 23]; Available from: https://gut.bmj.com/content/early/2019/11/29/gutjnl-2019-318812

  333. Frohlich J. GDF11 induces mild hepatic fibrosis independent of metabolic health. Ageing. 2020 (in review).

  334. Nagahashi M, Matsuda Y, Moro K, Tsuchida J, Soma D, Hirose Y, et al. DNA damage response and sphingolipid signaling in liver diseases. Surg Today. 2016;46:995–1005.

    CAS  PubMed  Google Scholar 

  335. Yan J, Tung H-C, Li S, Niu Y, Garbacz WG, Lu P, et al. Aryl hydrocarbon receptor signaling prevents activation of hepatic stellate cells and liver fibrogenesis in mice. Gastroenterology. 2019;157:793–806 e14.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank members of the Center for Translational Medicine (CTM, ICRC) for support.

Funding

This work was supported by the European Social Fund and European Regional Development Fund - Project MAGNET (No. CZ.02.1.01/0.0/0.0/15_003/0000492).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manlio Vinciguerra.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frohlich, J., Vinciguerra, M. Candidate rejuvenating factor GDF11 and tissue fibrosis: friend or foe?. GeroScience 42, 1475–1498 (2020). https://doi.org/10.1007/s11357-020-00279-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-020-00279-w

Keywords

Navigation