Skip to main content

Advertisement

Log in

Mulberry leaf polyphenols delay aging and regulate fat metabolism via the germline signaling pathway in Caenorhabditis elegans

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Mulberry leaves are an important ingredient in some traditional Chinese medicinal formulas and has been developed for use in functional food products. The antioxidant activity of mulberry leaf extract has been reported to have beneficial effects on diseases in vitro; however, it is not clear which components in mulberry leaf extracts have these functions. Furthermore, the mechanisms of action of these ingredients have not been extensively investigated. In this study, we extracted total mulberry leaf polyphenols (MLP) and identified its 13 phenolic monomers. Our results, using Caenorhabditis elegans as a model, indicated that MLPs delayed aging, improved oxidative stress resistance, and reduced fatty acid storage in vivo. Subsequent genetic screens and gene expression analyses demonstrated that the functions of MLP mainly depended on the germline signaling pathway, thus influencing the activities of downstream transcription factors (DAF-12, DAF-16, PHA-4, and NHR-80) as well as the expression levels of their target genes (fat-6, lipl-4, sod-3, unc-51, and fard-1). Our study determined that diverse modes of action on longevity were promoted by MLP exposure. These observations provide the first insight into MLP’s multifaceted functions on aging, fat accumulation, and reproduction in vivo and indicate a specific model for the mechanism of action of MLP. This is a significant finding that lends support to the hypotheses that mulberry leaf extracts can have an impact on human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MLP:

Mulberry leaf polyphenols

C. elegans :

Caenorhabditis elegans

DAF-16:

Dauer formation protein 16

DAF-12:

Dauer formation protein 12

FOXO:

Forkhead box protein O

PHA-4/FOXA:

a FOXA transcription factor

NHR-80:

Nuclear hormone receptor 80

IIS:

Insulin/IGF-1 like signaling pathway

SKN-1:

Skinhead, a homolog of mammalian Nrf proteins

WT=N2:

Wild-type C. elegans

References

  • Abbas S, Wink M (2010) Epigallocatechin gallate inhibits beta amyloid oligomerization in Caenorhabditis elegans and affects the daf-2/insulin-like signaling pathway. Phytomedicine 17(11):902–909

    Article  CAS  PubMed  Google Scholar 

  • Andallu B, Varadacharyulu NC (2003) Antioxidant role of mulberry (Morus indica L. cv. Anantha) leaves in streptozotocin-diabetic rats. Clin Chim Acta 338(1–2):3–10

    Article  CAS  PubMed  Google Scholar 

  • Andallu B, Suryakantham V, Lakshmi Srikanthi B, Reddy GK (2001) Effect of mulberry (Morus indica L.) therapy on plasma and erythrocyte membrane lipids in patients with type 2 diabetes. Clin Chim Acta 314(1–2):47–53

    Article  CAS  PubMed  Google Scholar 

  • Arantes-Oliveira N, Apfeld J, Dillin A, Kenyon C (2002) Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. Science 295(5554):502–505

    Article  CAS  PubMed  Google Scholar 

  • Ashrafi K (2007) Obesity and the regulation of fat metabolism. WormBook 120

  • Bass TM, Weinkove D, Houthoofd K, Gems D, Partridge L (2007) Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech Ageing Dev 128(10):546–552

    Article  CAS  PubMed  Google Scholar 

  • Berman JR, Kenyon C (2006) Germ-cell loss extends C. elegans life span through regulation of DAF-16 by kri-1 and lipophilic-hormone signaling. Cell 124(5):1055–1068

    Article  CAS  PubMed  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71-94

  • Chan KC, Yang MY, Lin MC, Lee YJ, Chang WC, Wang CJ (2013) Mulberry leaf extract inhibits the development of atherosclerosis in cholesterol-fed rabbits and in cultured aortic vascular smooth muscle cells. J Agric Food Chem 61:2780-2788

  • Choi J, Kang HJ, Kim SZ, Kwon TO, Jeong SI, Jang SI (2013) Antioxidant effect of astragalin isolated from the leaves of Morus alba L. against free radical-induced oxidative hemolysis of human red blood cells. Arch Pharm Res 36(7):912–917

    Article  CAS  PubMed  Google Scholar 

  • Collins JJ, Evason K, Kornfeld K (2006) Pharmacology of delayed aging and extended lifespan of Caenorhabditis elegans. Exp Gerontol 41(10):1032–1039

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimi A, Schluesener H (2012) Natural polyphenols against neurodegenerative disorders: potentials and pitfalls. Ageing Res Rev 11(2):329–345

    Article  CAS  PubMed  Google Scholar 

  • Gerisch B, Weitzel C, Kober-Eisermann C, Rottiers V, Antebi A (2001) A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and life span. Dev Cell 1(6):841–851

    Article  CAS  PubMed  Google Scholar 

  • Goudeau J, Bellemin S, Toselli-Mollereau E, Shamalnasab M, Chen Y, Aguilaniu H (2011) Fatty acid desaturation links germ cell loss to longevity through NHR-80/HNF4 in C. elegans. PLoS Biol 9(3):e1000599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Greer EL, Dowlatshahi D, Banko MR, Villen J, Hoang K, Blanchard D, Gygi SP, Brunet A (2007) An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol 17(19):1646–1656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hansen D, Wilson-Berry L, Dang T, Schedl T (2004) Control of the proliferation versus meiotic development decision in the C. elegans germline through regulation of GLD-1 protein accumulation. Development 131(1):93–104

    Article  CAS  PubMed  Google Scholar 

  • Hansen M, Flatt T, Aguilaniu H (2013) Reproduction, fat metabolism, and life span: what is the connection? Cell Metab 17(1):10–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Honda Y, Fujita Y, Maruyama H, Araki Y, Ichihara K, Sato A, Kojima T, Tanaka M, Nozawa Y, Ito M, Honda S (2011) Lifespan-extending effects of royal jelly and its related substances on the nematode Caenorhabditis elegans. PLoS One 6(8):e23527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang C, Xiong C, Kornfeld K (2004) Measurements of age-related changes of physiological processes that predict lifespan of Caenorhabditis elegans. Proc Natl Acad Sci U S A 101(21):8084–8089

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hulme SE, Whitesides GM (2011) Chemistry and the worm: Caenorhabditis elegans as a platform for integrating chemical and biological research. Angew Chem Int Ed Engl 50(21):4774–4807

    Article  CAS  PubMed  Google Scholar 

  • Katsube T, Imawaka N, Kawano Y, Yamazaki Y, Shiwaku K, Yamane Y (2006) Antioxidant flavonol glycosides in mulberry (Morus alba L.) leaves isolated based on LDL antioxidant activity. Food Chem 97(1):25–31

    Article  CAS  Google Scholar 

  • Katsube T, Tsurunaga Y, Sugiyama M, Furuno T, Yamasaki Y (2009) Effect of air-drying temperature on antioxidant capacity and stability of polyphenolic compounds in mulberry (Morus alba L.) leaves. Food Chem 113(4):964–969

    Article  CAS  Google Scholar 

  • Lapierre LR, Hansen M (2012) Lessons from C. elegans: signaling pathways for longevity. Trends Endocrinol Metab 23(12):637–644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liang L, Wu X, Zhu M, Zhao W, Li F, Zou Y, Yang L (2012) Chemical composition, nutritional value, and antioxidant activities of eight mulberry cultivars from China. Pharmacogn Mag 8(31):215–224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liao VH, Yu CW, Chu YJ, Li WH, Hsieh YC, Wang TT (2011) Curcumin-mediated lifespan extension in Caenorhabditis elegans. Mech Ageing Dev 132(10):480–487

    Article  CAS  PubMed  Google Scholar 

  • Lim HH, Yang SJ, Kim Y, Lee M, Lim Y (2013) Combined treatment of mulberry leaf and fruit extract ameliorates obesity-related inflammation and oxidative stress in high fat diet-induced obese mice. J Med Food 16(8):673–680

    Article  PubMed Central  PubMed  Google Scholar 

  • Lithgow GJ, Gill MS, Olsen A, Sampayo JN (2005) Pharmacological intervention in invertebrate aging. Age 27(3):213–223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mudra M, Ercan-Fang N, Zhong L, Furne J, Levitt M (2007) Influence of mulberry leaf extract on the blood glucose and breath hydrogen response to ingestion of 75 g sucrose by type 2 diabetic and control subjects. Diabetes Care 30(5):1272–1274

    Article  PubMed  Google Scholar 

  • Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev 2(5):270–278

    Article  Google Scholar 

  • Park S, Kim J, Kim Y (2012) Mulberry leaf extract inhibits cancer cell stemness in neuroblastoma. Nutr Cancer 64(6):889–898

    Article  PubMed  Google Scholar 

  • Peng C, Chan HY, Li YM, Huang Y, Chen ZY (2009) Black tea theaflavins extend the lifespan of fruit flies. Exp Gerontol 44(12):773–783

    Article  CAS  PubMed  Google Scholar 

  • Perron NR, Brumaghim JL (2009) A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys 53(2):75–100

    Article  CAS  PubMed  Google Scholar 

  • Ristow M, Schmeisser S (2011) Extending life span by increasing oxidative stress. Free Radic Biol Med 51(2):327–336

    Article  CAS  PubMed  Google Scholar 

  • Sangha JS, Sun X, Wally OS, Zhang K, Ji X, Wang Z, Wang Y, Zidichouski J, Prithiviraj B, Zhang J (2012) Liuwei Dihuang (LWDH), a traditional Chinese medicinal formula, protects against beta-amyloid toxicity in transgenic Caenorhabditis elegans. PLoS One 7(8):e43990

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh SP, Niemczyk M, Zimniak L, Zimniak P (2009) Fat accumulation in Caenorhabditis elegans triggered by the electrophilic lipid peroxidation product 4-hydroxynonenal (4-HNE). Aging (Albany NY) 1(1):68–80

    CAS  Google Scholar 

  • Sohal RS, Orr WC (2012) The redox stress hypothesis of aging. Free Radic Biol Med 52(3):539–555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sunagawa T, Shimizu T, Kanda T, Tagashira M, Sami M, Shirasawa T (2011) Procyanidins from apples (Malus pumila Mill.) extend the lifespan of Caenorhabditis elegans. Planta Med 77(2):122–127

    Article  CAS  PubMed  Google Scholar 

  • Thom E (2007) The effect of chlorogenic acid enriched coffee on glucose absorption in healthy volunteers and its effect on body mass when used long-term in overweight and obese people. J Int Med Res 35(6):900–908

    Article  CAS  PubMed  Google Scholar 

  • Tullet JM, Hertweck M, An JH, Baker J, Hwang JY, Liu S, Oliveira RP, Baumeister R, Blackwell TK (2008) Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 132(6):1025–1038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Volovik Y, Maman M, Dubnikov T, Bejerano-Sagie M, Joyce D, Kapernick EA, Cohen E, Dillin A (2012) Temporal requirements of heat shock factor-1 for longevity assurance. Aging Cell 11(3):491–499

    Article  CAS  PubMed  Google Scholar 

  • Wilson MA, Shukitt-Hale B, Kalt W, Ingram DK, Joseph JA, Wolkow CA (2006) Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans. Aging Cell 5(1):59–68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430(7000):686–689

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Smith JV, Paramasivam V, Butko P, Khan I, Cypser JR, Luo Y (2002) Ginkgo biloba extract EGb 761 increases stress resistance and extends life span of Caenorhabditis elegans. Cell Mol Biol (Noisy-le-grand) 48(6):725–731

    CAS  Google Scholar 

  • Wu T, Qi X, Liu Y, Guo J, Zhu R, Chen W, Zheng X, Yu T (2013) Dietary supplementation with purified mulberry (Morus australis Poir) anthocyanins suppresses body weight gain in high-fat diet fed C57BL/6 mice. Food Chem 141(1):482–487

    Article  CAS  PubMed  Google Scholar 

  • Yamawaki TM, Berman JR, Suchanek-Kavipurapu M, McCormick M, Gaglia MM, Lee SJ, Kenyon C (2010) The somatic reproductive tissues of C. elegans promote longevity through steroid hormone signaling. PLoS Biol 8(8)

  • Zou S, Carey JR, Liedo P, Ingram DK, Yu B (2012a) Prolongevity effects of a botanical with oregano and cranberry extracts in Mexican fruit flies: examining interactions of diet restriction and age. Age (Dordr) 34(2):269–279

    Article  Google Scholar 

  • Zou Y, Liao S, Shen W, Liu F, Tang C, Chen CY, Sun Y (2012b) Phenolics and antioxidant activity of mulberry leaves depend on cultivar and harvest month in Southern China. Int J Mol Sci 13(12):16544–16553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Caenorhabditis Genetics Center (CGC), which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440), and Dr. Luo from Kunming Institute of Botany, Chinese Academy of Sciences, for providing all the worm strains. This work was supported by the Special Fund for Agro-scientific Research in the Public Interest (201403064) and the Nation Key Technology R&D Program (2012BAD36B07).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shanqing Zheng or Sentai Liao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 275 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, S., Liao, S., Zou, Y. et al. Mulberry leaf polyphenols delay aging and regulate fat metabolism via the germline signaling pathway in Caenorhabditis elegans . AGE 36, 9719 (2014). https://doi.org/10.1007/s11357-014-9719-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-014-9719-z

Keywords

Navigation