Skip to main content

Advertisement

Log in

Neuromuscular adaptations to concurrent training in the elderly: effects of intrasession exercise sequence

  • Published:
AGE Aims and scope Submit manuscript

Abstract

The aim of this study was investigate the effects of different intrasession exercise orders in the neuromuscular adaptations induced by concurrent training in elderly. Twenty-six healthy elderly men (64.7 ± 4.1 years), were placed into two concurrent training groups: strength prior to (SE, n = 13) or after (ES, n = 13) endurance training. Subjects trained strength and endurance training during 12 weeks, three times per week performing both exercise types in the same training session. Upper and lower body one maximum repetition test (1RM) and lower-body isometric peak torque (PTiso) and rate of force development were evaluated as strength parameters. Upper and lower body muscle thickness (MT) was determined by ultrasonography. Lower-body maximal surface electromyographic activity of vastus lateralis and rectus femoris muscles (maximal electromyographic (EMG) amplitude) and neuromuscular economy (normalized EMG at 50 % of pretraining PTiso) were determined. Both SE and ES groups increased the upper- and lower-body 1RM, but the lower-body 1RM increases observed in the SE was higher than ES (35.1 ± 12.8 vs. 21.9 ± 10.6 %, respectively; P < 0.01). Both SE and ES showed MT increases in all muscles evaluated, with no differences between groups. In addition, there were increases in the maximal EMG and neuromuscular economy of vastus lateralis in both SE and ES, but the neuromuscular economy of rectus femoris was improved only in SE (P < 0.001). Performing strength prior to endurance exercise during concurrent training resulted in greater lower-body strength gains as well as greater changes in the neuromuscular economy (rectus femoris) in elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P (2002a) Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol 93:1318–1326

    PubMed  Google Scholar 

  • Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P (2002b) Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses. J Appl Physiol 92:2309–2318

    PubMed  Google Scholar 

  • Aagaard P, Suetta C, Caserotti P, Magnusson SP, Kjaer M (2010) Role of the nervous system in sarcopenia nad muscle atrophy with aging: strength training as a countermeasure. Scand J Med Sci Sports 20:49–64

    Article  CAS  PubMed  Google Scholar 

  • Ahtiainen JP, Hoffren M, Hulmi JJ, Pietikäinen M, Mero AA, Avela J, Häkkinen K (2010) Panoramic ultrasonography is a valid method to measure changes in skeletal muscle cross-sectional area. Eur J Appl Physiol 108:273–279

    Article  PubMed  Google Scholar 

  • Bell GJ, Syrotuik D, Socha T, Maclean I, Quinney HÁ (1997) Effect of strength and endurance training on strength, testosterone, and cortisol. J Strength Cond Res 11:57–64

    Google Scholar 

  • Bell GJ, Syrotuik D, Martin TP, Burnham R, Quinney HÁ (2000) Effect of concurrent strength and endurance training on skeletal muscle properties and hormone concentrations in humans. Eur J Appl Physiol 81:418–427

    Article  CAS  PubMed  Google Scholar 

  • Brentano MA, Cadore EL, Silva EM, Ambrosini AB, Coertjens M, Petkowics R, Viero I, Kruel LFM (2008) Physiological adaptations to strength and circuit training in postmenopausal women with bone loss. J Strength Cond Res 22:1816–1825

    Article  PubMed  Google Scholar 

  • Cadore EL, Pinto RS, Lhullier FLR, Correa CS, Alberton CL, Pinto SS, Almeida APV, Tartaruga MP, Silva EM, Kruel LFM (2010) Physiological effects of concurrent training in elderly men. Int J Sports Med 31:689–697

    Article  CAS  PubMed  Google Scholar 

  • Cadore EL, Pinto RS, Alberton CL, Pinto SS, Lhullier FLR, Tartaruga MP, Correa CS, Almeida APV, Silva EM, Laitano O, Kruel LFM (2011a) Neuromuscular economy, strength and endurance in healthy elderly men. J Strength Cond Res 25:997–1003

    Article  PubMed  Google Scholar 

  • Cadore EL, Pinto RS, Lhullier FLR, Correa CS, Alberton CL, Pinto SS, Almeida APV, Tartaruga MP, Silva EM, Kruel LFM (2011b) Effects of strength, endurance and concurrent training on aerobic power and dynamic neuromuscular economy in elderly men. J Strength Cond Res 25:758–766

    Article  PubMed  Google Scholar 

  • Chilibeck PD, Stride D, Farthing JP, Burke DG (2004) Effect of creatine ingestion after exercise on muscle thickness in males and females. Med Sci Sports Exerc 36:1781–1788

    Article  CAS  PubMed  Google Scholar 

  • Chtara M, Chaouachi A, Levin GT, Chaouachi M, Chamari K, Amri M, Laursen PB (2008) Effect of concurrent endurance and circuit resistance training sequence on muscular strength and power development. J Strength Cond Res 22:1037–1045

    Article  PubMed  Google Scholar 

  • Fukunaga T, Miayatani M, Tachi M, Kouzaki M, Kawakami Y, Kanehisa H (2001) Muscle volume is a major determinant of joint torque in humans. Acta Physiol Scand 172:249–255

    Article  CAS  PubMed  Google Scholar 

  • García-Pallares J, Izquierdo M (2011) Strategies to optimize concurrent training of strength and aerobic fitness for rowing and canoeing. Sports Med 41:329–343

    Article  PubMed  Google Scholar 

  • Gravelle BL, Blessing DL (2000) Physiological adaptation in women concurrently training for strength and endurance. J Strength Cond Res 14:5–13

    Google Scholar 

  • Häkkinen K, Alen M, Kraemer WJ, Gorostiaga EM, Izquierdo M, Rusko H, Mikkola J, Häkkinen A, Valkeinen H, Kaarakainen E, Romu S, Erola V, Ahtiainen J, Paavolainen L (2003) Neuromuscular adaptations during concurrent strength and endurance training versus strength training. J Appl Physiol 89:42–52

    Article  Google Scholar 

  • Holviala J, Häkkinen A, Karavirta L, Nyman K, Izquierdo M, Gorostiaga EM, Avela J, Korhonen J, Knuutila V-P, Kraemer WJ, Häkkinen K (2010) Effects of combined strength and endurance training on treadmill load carrying walking performance in aging men. J Strength Cond Res 24:1584–1595

    Article  PubMed  Google Scholar 

  • Holviala J, Kraemer WJ, Sillampää E, Karpinen H, Avela J, Kauhanen A, Häkkinen A, Häkkinen K (2011) Effects of strength, endurance and combined training on muscle strength, walking speed and dynamic balance in aging men. Eur J Appl Physiol. doi:10.1007/s00421-011-2089-7

  • Izquierdo M, Häkkinen K, Antón A, Garrues M, Ibañez J, Ruesta M, Gorostiaga EM (2001) Maximal strength and power, endurance performance, and serum hormones in middle-aged and elderly men. Med Sci Sports Exerc 33:1577–1587

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo M, Häkkinen K, Ibanez J, Antón A, Garrués M, Ruesta M, Gorostiaga EM (2003) Effects of strength training on submaximal and maximal endurance performance capacity in middle-aged and older men. J Strength Cond Res 17:129–139

    PubMed  Google Scholar 

  • Izquierdo M, Ibañez J, Häkkinen K, Kraemer WJ, Larrión JL, Gorostiaga EM (2004) Once weekly combined resistance and cardiovascular training in healthy older men. Med Sci Sports Exerc 36:435–443

    Article  PubMed  Google Scholar 

  • Izquierdo M, Häkkinen K, Ibañez J, Kraemer WJ, Gorostiaga EM (2005) Effects of combined resistance and cardiovascular training on strength, power, muscle cross-sectional area, and endurance markers in middle-aged men. Eur J Appl Physiol 94:70–75

    Article  PubMed  Google Scholar 

  • Jackson AS, Pollock ML (1978) Generalized equations for predicting body density of men. Brit J Nutr 40:497–504

    Article  CAS  PubMed  Google Scholar 

  • Kamen G, Knight CA (2004) Training-related adaptations in motor unit discharge rate in young and older adults. J Gerontol A Biol Sci Med Sci 59:1334–1338

    Article  PubMed  Google Scholar 

  • Karavirta L, Tulppo MP, Laaksonen DE, Nyman K, Laukkanen RT, Kinnunen H, Häkkinen A, Häkkinen K (2009) Heart rate dynamics after combined endurance and strength training in older men. Med Sci Sports Exerc 41:1436–1443

    Article  PubMed  Google Scholar 

  • Karavirta L, Häkkinen A, Sillanpää E, Garcia-Lopez D, Kauhanen A, Haapasaari A, Alen M, Pakarinen A, Kraemer WJ, Izquierdo M, Gorostiaga EM, Häkkinen K (2011) Effects of combined endurance and strength training on muscle strength, power and hypertrophy in 40–67-year-old men. Scand J Med Sci Sports 21:402–411

    Article  CAS  PubMed  Google Scholar 

  • Knight CA, Kamen G (2001) Adaptations in muscle activation of the knee extensor muscle with strength training in young and older adults. J Electromyogr Kinesiol 11:405–412

    Article  CAS  PubMed  Google Scholar 

  • Korhonen MT, Mero AA, Alen M, Sipila S, Hakkinen K, Liikavainio T, Viitasalo JT, Haverinen MT, Suominen H (2009) Biomechanical and skeletal muscle determinants of maximum running speed with aging. Med Sci Sports Exerc 41:844–856

    Article  PubMed  Google Scholar 

  • Kraemer WJ, Patton JF, Gordon SE, Harman EA, Deschenes MR, Reynolds K, Newton RU, Tripplet NT, Dziados JE (1995) Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol 78:976–989

    CAS  PubMed  Google Scholar 

  • Kumagai K, Abe T, Brechue WF, Ryushi T, Takano S, Mizuno M (2000) Sprint performance is related with muscle fascicle length in male 100 m-sprinters. J Appl Physiol 88:811–816

    CAS  PubMed  Google Scholar 

  • Leis AA, Trapani VC (2000) Atlas of electromiography. Oxford University Press, Oxford

    Google Scholar 

  • Lepers R, Millet GY, Maffiuletti NA (2001) Effect of cycling cadence on contractile and neural properties of knee extensors. Med Sci Sports Exerc 33:1882–1888

    Article  CAS  PubMed  Google Scholar 

  • McCarthy JP, Pozniak MA, Agre JC (2002) Neuromuscular adaptations to concurrent strength and endurance training. Med Sci Sports Exerc 34:511–519

    Article  PubMed  Google Scholar 

  • Miyatani M, Kanehisa H, Kuno S, Nishijima T, Fukunaga T (2002) Validity of ultrasonograph muscle thickness measurements for estimating muscle volume of knee extensors in humans. Eur J Appl Physiol 86:203–208

    Article  PubMed  Google Scholar 

  • Narici MV, Roi GS, Landoni L, Minetti AE, Cerretelli P (1989) Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps. Eur J Appl Physiol 59:310–319

    Article  CAS  Google Scholar 

  • Nogueira W, Gentil P, Mello SN, Oliveira RJ, Bezerra AJ, Bottaro M (2009) Effects of power training on muscle thickness of older men. Int J Sports Med 30:200–204

    Article  CAS  PubMed  Google Scholar 

  • Putman CT, Xu X, Gillies E, Maclean IM, Bell GJ (2004) Effects of strength, endurance and combined training on myosin heavy chain content and fiber-type distribution in humans. Eur J Appl Physiol 92:376–384

    Article  CAS  PubMed  Google Scholar 

  • Sale DG, Jacobs I, Macdougall JD, Garner S (1990) Comparison of two regimens of concurrent strength and endurance training. Med Sci Sports Exerc 22:348–356

    Article  CAS  PubMed  Google Scholar 

  • Schoenfeld BJ (2010) The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res 24:2857–2872

    Article  PubMed  Google Scholar 

  • Sillampää E, Häkkinen A, Nyman K, Cheng S, Karavirta L, Laaksonen DE, Huuhka N, Kraemer WJ, Häkkinen K (2008) Body composition and fitness during strength and/or endurance training in older men. Med Sci Sports Exerc 40:950–958

    Article  Google Scholar 

  • Siri WE (1993) Body composition from fluid spaces and density: analysis of methods. Nutrition 9:480–491

    CAS  PubMed  Google Scholar 

  • Wasserman K (1986) The anaerobic threshold: definition, physiological significance and identification. Adv Cardiol 35:1–23

    CAS  PubMed  Google Scholar 

  • Wood RH, Reyes R, Welsch MA, Favarolo-Sabatier J, Sabatier M, Lee CM, Johnson LG, Hooper PF (2001) Concurrent cardiovascular and resistance training in healthy older adults. Med Sci Sports Exerc 33:1751–1758

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors specially thank FAPERGS, CAPES, CNPq, and FINEP Brazilian Government Associations for support to this project. The authors are also indebted to the Spanish Ministry of Health, Institute Carlos III, Department of Health of the Government of Navarra and the Government of Spain, and the Spanish Ministry of Science and Innovation for financing this research with grants RD06/013/1003 and 87/2010 and DEP2011-24105, respectively. We also acknowledge Mr. Matheus Conceição, Dr. Giovani Cunha, and Prof. Guilherme Trindade for their help in data collection and analysis. Furthermore, we also gratefully acknowledge all subjects who participated in this research and made this project possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Lusa Cadore.

About this article

Cite this article

Cadore, E.L., Izquierdo, M., Pinto, S.S. et al. Neuromuscular adaptations to concurrent training in the elderly: effects of intrasession exercise sequence. AGE 35, 891–903 (2013). https://doi.org/10.1007/s11357-012-9405-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-012-9405-y

Keywords

Navigation