Skip to main content

Advertisement

Log in

The negative effect of prolonged somatotrophic/insulin signaling on an adult bone marrow-residing population of pluripotent very small embryonic-like stem cells (VSELs)

  • Published:
AGE Aims and scope Submit manuscript

Abstract

It is well known that attenuated insulin/insulin-like growth factor signaling (IIS) has a positive effect on longevity in several animal species, including mice. Here, we demonstrate that a population of murine pluripotent very small embryonic-like stem cells (VSELs) that reside in bone marrow (BM) is protected from premature depletion during aging by intrinsic parental gene imprinting mechanisms and the level of circulating insulin-like growth factor-I (IGF-I). Accordingly, an increase in the circulating level of IGF-I, as seen in short-lived bovine growth hormone (bGH)-expressing transgenic mice, which age prematurely, as well as in wild-type animals injected for 2 months with bGH, leads to accelerated depletion of VSELs from bone marrow (BM). In contrast, long-living GHR-null or Ames dwarf mice, which have very low levels of circulating IGF-I, exhibit a significantly higher number of VSELs in BM than their littermates at the same age. However, the number of VSELs in these animals decreases after GH or IGF-I treatment. These changes in the level of plasma-circulating IGF-I corroborate with changes in the genomic imprinting status of crucial genes involved in IIS, such as Igf-2-H19, RasGRF1, and Ig2R. Thus, we propose that a chronic increase in IIS contributes to aging by premature depletion of pluripotent VSELs in adult tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen B, Pearse RV 2nd, Jenne K, Sornson M, Lin SC, Bartke A, Rosenfeld MG (1995) The Ames dwarf gene is required for Pit-1 gene activation. Dev Biol 172:495–503

    Article  PubMed  CAS  Google Scholar 

  • Avogaro A, de Kreutzenberg SV, Fadini GP (2010) Insulin signaling and life span. Pflugers Arch 459:301–314

    Article  PubMed  CAS  Google Scholar 

  • Bartke A, Brown-Borg H (2004) Life extension in the dwarf mouse. Curr Top Dev Biol 63:189–225

    Article  PubMed  CAS  Google Scholar 

  • Bartke A, Chandrashekar V, Bailey B, Zaczek D, Turyn D (2002) Consequences of growth hormone (GH) overexpression and GH resistance. Neuropeptides 36:201–208

    Article  PubMed  CAS  Google Scholar 

  • Bonkowski MS, Rocha JS, Masternak MM, Al Regaiey KA, Bartke A (2006) Targeted disruption of growth hormone receptor interferes with the beneficial actions of calorie restriction. Proc Natl Acad Sci U S A 103:7901–7905

    Article  PubMed  CAS  Google Scholar 

  • Borras C, Monleon D, Lopez-Grueso R, Gambini J, Orlando L, Pallardo FV, Santos E, Vina J, Font de Mora J (2011) RasGrf1 deficiency delays aging in mice. Aging (Albany NY) 3:262–276

    CAS  Google Scholar 

  • Braulke T (1999) Type-2 IGF receptor: a multi-ligand binding protein. Horm Metab Res 31:242–246

    Article  PubMed  CAS  Google Scholar 

  • Brown-Borg HM (2009) Hormonal control of aging in rodents: the somatotropic axis. Mol Cell Endocrinol 299:64–71

    Article  PubMed  CAS  Google Scholar 

  • Brown-Borg HM, Borg KE, Meliska CJ, Bartke A (1996) Dwarf mice and the ageing process. Nature 384:33

    Article  PubMed  CAS  Google Scholar 

  • Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292:104–106

    Article  PubMed  CAS  Google Scholar 

  • Coschigano KT, Clemmons D, Bellush LL, Kopchick JJ (2000) Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 141:2608–2613

    Article  PubMed  CAS  Google Scholar 

  • Coschigano KT, Holland AN, Riders ME, List EO, Flyvbjerg A, Kopchick JJ (2003) Deletion, but not antagonism, of the mouse growth hormone receptor results in severely decreased body weights, insulin, and insulin-like growth factor I levels and increased life span. Endocrinology 144:3799–3810

    Article  PubMed  CAS  Google Scholar 

  • de Magalhaes JP (2011) Paternal genome effects on aging: evidence for a role of Rasgrf1 in longevity determination? Mech Ageing Dev 132:72–73

    Article  PubMed  Google Scholar 

  • Doepfner KT, Spertini O, Arcaro A (2007) Autocrine insulin-like growth factor-I signaling promotes growth and survival of human acute myeloid leukemia cells via the phosphoinositide 3-kinase/Akt pathway. Leukemia 21:1921–1930

    Article  PubMed  CAS  Google Scholar 

  • Drake NM, Park YJ, Shirali AS, Cleland TA, Soloway PD (2009) Imprint switch mutations at Rasgrf1 support conflict hypothesis of imprinting and define a growth control mechanism upstream of IGF1. Mamm Genome 20:654–663

    Article  PubMed  Google Scholar 

  • Flores I, Blasco MA (2010) The role of telomeres and telomerase in stem cell aging. FEBS Lett 584:3826–3830

    Article  PubMed  CAS  Google Scholar 

  • Font de Mora J, Esteban LM, Burks DJ, Nunez A, Garces C, Garcia-Barrado MJ, Iglesias-Osma MC, Moratinos J, Ward JM, Santos E (2003) Ras-GRF1 signaling is required for normal beta-cell development and glucose homeostasis. EMBO J 22:3039–3049

    Article  PubMed  CAS  Google Scholar 

  • Fontana L, Weiss EP, Villareal DT, Klein S, Holloszy JO (2008) Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentration in humans. Aging Cell 7:681–687

    Article  PubMed  CAS  Google Scholar 

  • Fontana L, Partridge L, Longo VD (2010) Extending healthy life span—from yeast to humans. Science 328:321–326

    Article  PubMed  CAS  Google Scholar 

  • Ikeno Y, Hubbard GB, Lee S, Cortez LA, Lew CM, Webb CR, Berryman DE, List EO, Kopchick JJ, Bartke A (2009) Reduced incidence and delayed occurrence of fatal neoplastic diseases in growth hormone receptor/binding protein knockout mice. J Gerontol A Biol Sci Med Sci 64:522–529

    Article  PubMed  Google Scholar 

  • Ito K, Hirao A, Arai F, Matsuoka S, Takubo K, Hamaguchi I, Nomiyama K, Hosokawa K, Sakurada K, Nakagata N et al (2004) Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431:997–1002

    Article  PubMed  CAS  Google Scholar 

  • Kawahara M, Kono T (2010) Longevity in mice without a father. Hum Reprod 25:457–461

    Article  PubMed  CAS  Google Scholar 

  • Koufos A, Hansen MF, Copeland NG, Jenkins NA, Lampkin BC, Cavenee WK (1985) Loss of heterozygosity in three embryonal tumours suggests a common pathogenetic mechanism. Nature 316:330–334

    Article  PubMed  CAS  Google Scholar 

  • Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J, Ratajczak MZ (2006) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 20:857–869

    Article  PubMed  CAS  Google Scholar 

  • Kucia M, Shin DM, Liu R, Ratajczak J, Bryndza E, Masternak MM, Bartke A, Ratajczak MZ (2011) Reduced number of VSELs in the bone marrow of growth hormone transgenic mice indicates that chronically elevated Igf1 level accelerates age-dependent exhaustion of pluripotent stem cell pool: a novel view on aging. Leukemia 25:1370–1374

    Article  PubMed  CAS  Google Scholar 

  • Liang Y, Van Zant G, Szilvassy SJ (2005) Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood 106:1479–1487

    Article  PubMed  CAS  Google Scholar 

  • Longo VD, Finch CE (2003) Evolutionary medicine: from dwarf model systems to healthy centenarians? Science 299:1342–1346

    Article  PubMed  Google Scholar 

  • Lopes S, Lewis A, Hajkova P, Dean W, Oswald J, Forne T, Murrell A, Constancia M, Bartolomei M, Walter J et al (2003) Epigenetic modifications in an imprinting cluster are controlled by a hierarchy of DMRs suggesting long-range chromatin interactions. Hum Mol Genet 12:295–305

    Article  PubMed  CAS  Google Scholar 

  • Masoro EJ (2005) Overview of caloric restriction and ageing. Mech Ageing Dev 126:913–922

    Article  PubMed  CAS  Google Scholar 

  • Masternak MM, Panici JA, Wang F, Wang Z, Spong A (2010) The effects of growth hormone (GH) treatment on GH and insulin/IGF-1 signaling in long-lived Ames dwarf mice. J Gerontol A Biol Sci Med Sci 65:24–30

    Article  PubMed  Google Scholar 

  • Mayack SR, Shadrach JL, Kim FS, Wagers AJ (2010) Systemic signals regulate ageing and rejuvenation of blood stem cell niches. Nature 463:495–500

    Article  PubMed  CAS  Google Scholar 

  • McGrane MM, de Vente J, Yun J, Bloom J, Park E, Wynshaw-Boris A, Wagner T, Rottman FM, Hanson RW (1988) Tissue-specific expression and dietary regulation of a chimeric phosphoenolpyruvate carboxykinase/bovine growth hormone gene in transgenic mice. J Biol Chem 263:11443–11451

    PubMed  CAS  Google Scholar 

  • Oberdoerffer P, Sinclair DA (2007) The role of nuclear architecture in genomic instability and ageing. Nat Rev Mol Cell Biol 8:692–702

    Article  PubMed  CAS  Google Scholar 

  • Ohlsson C, Mohan S, Sjogren K, Tivesten A, Isgaard J, Isaksson O, Jansson JO, Svensson J (2009) The role of liver-derived insulin-like growth factor-I. Endocr Rev 30:494–535

    Article  PubMed  CAS  Google Scholar 

  • Panici JA, Harper JM, Miller RA, Bartke A, Spong A, Masternak MM (2010) Early life growth hormone treatment shortens longevity and decreases cellular stress resistance in long-lived mutant mice. FASEB J 24:5073–5079

    Article  PubMed  CAS  Google Scholar 

  • Piper MD, Bartke A (2008) Diet and aging. Cell Metab 8:99–104

    Article  PubMed  CAS  Google Scholar 

  • Pollak M (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8:915–928

    Article  PubMed  CAS  Google Scholar 

  • Prawitt D, Enklaar T, Gartner-Rupprecht B, Spangenberg C, Lausch E, Reutzel D, Fees S, Korzon M, Brozek I, Limon J et al (2005) Microdeletion and IGF2 loss of imprinting in a cascade causing Beckwith–Wiedemann syndrome with Wilms' tumor. Nat Genet 37:785–786, author reply 786-787

    Article  PubMed  CAS  Google Scholar 

  • Ratajczak MZ, Kuczynski WI, Onodera K, Moore J, Ratajczak J, Kregenow DA, DeRiel K, Gewirtz AM (1994) A reappraisal of the role of insulin-like growth factor I in the regulation of human hematopoiesis. J Clin Invest 94:320–327

    Article  PubMed  CAS  Google Scholar 

  • Ratajczak J, Zhang Q, Pertusini E, Wojczyk BS, Wasik MA, Ratajczak MZ (1998) The role of insulin (INS) and insulin-like growth factor-I (IGF-I) in regulating human erythropoiesis. Studies in vitro under serum-free conditions—comparison to other cytokines and growth factors. Leukemia 12:371–381

    Article  PubMed  CAS  Google Scholar 

  • Ratajczak MZ, Shin DM, Kucia M (2009) Very small embryonic/epiblast-like stem cells: a missing link to support the germ line hypothesis of cancer development? Am J Pathol 174:1985–1992

    Article  PubMed  CAS  Google Scholar 

  • Ratajczak MZ, Shin DM, Ratajczak J, Kucia M, Bartke A (2010) A novel insight into aging: are there pluripotent very small embryonic-like stem cells (VSELs) in adult tissues overtime depleted in an Igf-1-dependent manner? Aging (Albany NY) 2:875–883

    CAS  Google Scholar 

  • Ratajczak J, Shin DM, Wan W, Liu R, Masternak MM, Piotrowska K, Wiszniewska B, Kucia M, Bartke A, Ratajczak MZ (2011a) Higher number of stem cells in the bone marrow of circulating low Igf-1 level Laron dwarf mice—novel view on Igf-1, stem cells and aging. Leukemia 25:729–733

    Article  PubMed  CAS  Google Scholar 

  • Ratajczak J, Wysoczynski M, Zuba-Surma E, Wan W, Kucia M, Yoder MC, Ratajczak MZ (2011b) Adult murine bone marrow-derived very small embryonic-like stem cells differentiate into the hematopoietic lineage after coculture over OP9 stromal cells. Exp Hematol 39:225–237

    Article  PubMed  CAS  Google Scholar 

  • Ratajczak J, Zuba-Surma E, Klich I, Liu R, Wysoczynski M, Greco N, Kucia M, Laughlin MJ, Ratajczak MZ (2011c) Hematopoietic differentiation of umbilical cord blood-derived very small embryonic/epiblast-like stem cells. Leukemia 25:1278–1285

    Article  PubMed  CAS  Google Scholar 

  • Ratajczak MZ, Kucia M, Liu R, Shin DM, Bryndza E, Masternak MM, Tarnowski M, Ratajczak J, Bartke A (2011d) RasGrf1: genomic imprinting, VSELs, and aging. Aging (Albany NY) 3:692–697

    CAS  Google Scholar 

  • Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2:21–32

    Article  PubMed  CAS  Google Scholar 

  • Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ, Weissman IL (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A 102:9194–9199

    Article  PubMed  CAS  Google Scholar 

  • Russell SJ, Kahn CR (2007) Endocrine regulation of ageing. Nat Rev Mol Cell Biol 8:681–691

    Article  PubMed  CAS  Google Scholar 

  • Sharpless NE, DePinho RA (2007) How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol 8:703–713

    Article  PubMed  CAS  Google Scholar 

  • Shin DM, Zuba-Surma EK, Wu W, Ratajczak J, Wysoczynski M, Ratajczak MZ, Kucia M (2009) Novel epigenetic mechanisms that control pluripotency and quiescence of adult bone marrow-derived Oct4(+) very small embryonic-like stem cells. Leukemia 23:2042–2051

    Article  PubMed  CAS  Google Scholar 

  • Shin DM, Kucia M, Ratajczak MZ (2010a) Nuclear and chromatin reorganization during cell senescence and aging—a mini-review. Gerontology 57:76–84

    Article  PubMed  Google Scholar 

  • Shin DM, Liu R, Klich I, Wu W, Ratajczak J, Kucia M, Ratajczak MZ (2010b) Molecular signature of adult bone marrow-purified very small embryonic-like stem cells supports their developmental epiblast/germ line origin. Leukemia 24:1450–1461

    Article  PubMed  CAS  Google Scholar 

  • Steuerman R, Shevah O, Laron Z (2011) Congenital IGF1 deficiency tends to confer protection against post-natal development of malignancies. Eur J Endocrinol 164:485–489

    Article  PubMed  CAS  Google Scholar 

  • Taichman RS, Wang Z, Shiozawa Y, Jung Y, Song J, Balduino A, Wang J, Patel LR, Havens AM, Kucia M et al (2010) Prospective identification and skeletal localization of cells capable of multilineage differentiation in vivo. Stem Cells Dev 19:1557–1570

    Article  PubMed  CAS  Google Scholar 

  • Tatar M, Bartke A, Antebi A (2003) The endocrine regulation of aging by insulin-like signals. Science 299:1346–1351

    Article  PubMed  CAS  Google Scholar 

  • Tazzari PL, Tabellini G, Bortul R, Papa V, Evangelisti C, Grafone T, Martinelli G, McCubrey JA, Martelli AM (2007) The insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 induces apoptosis in acute myeloid leukemia cells exhibiting autocrine insulin-like growth factor-I secretion. Leukemia 21:886–896

    Article  PubMed  CAS  Google Scholar 

  • Yoon B, Herman H, Hu B, Park YJ, Lindroth A, Bell A, West AG, Chang Y, Stablewski A, Piel JC et al (2005) Rasgrf1 imprinting is regulated by a CTCF-dependent methylation-sensitive enhancer blocker. Mol Cell Biol 25:11184–11190

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Xu BC, Maheshwari HG, He L, Reed M, Lozykowski M, Okada S, Cataldo L, Coschigamo K, Wagner TE et al (1997) A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse). Proc Natl Acad Sci U S A 94:13215–13220

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH R01 DK074720, EU structural funds, Innovative Economy Operational Program POIG.01.01.01-00-109/09-01, and the Henry M. and Stella M. Hoenig Endowment to MZR; by NIH P20RR018733 from the National Center for Research Resources to MK; NIH P01 AG031736 to AB; and NIH AG032290, KBN grant N N401 042638, and U19 AG023122 to MM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Z. Ratajczak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

COBRA assay for Igf2-H19 and RasGRF1 DMRs in the response to prolonged GH treatment. Panel A. COBRA assay of Igf2-H19 DMR1 (upper panel) and RasGRF1 DMR (lower panel) by BstUI restriction enzyme cleavage in the indicated cells isolated from six-month- (left) and one-year-old (right) bGH transgenic (bGH-TG) mice and their control wt littermates (bGH-wt). Panels B and C. COBRA assay of Igf2-H19 DMR1 by BstUI restriction enzyme cleavage of the indicated cells isolated from (Panel B) two-year-old Ames dwarf (Prop1df/df, left panel) and Laron dwarf (GHR––, right panel) mice and their control heterozygote (Prop1df/+ or GHR+/–) littermates. Panel C Ames dwarf mice were injected with porcine GH (pGH) at the age of 2 weeks (left) or 6 months (right) for 6 weeks. As a control, same-age mice were treated with saline. The unmethylated DNA (dashed arrow) was not cleaved, in contrast to methylated DNA (solid arrow), because of a sequence change at the site recognized by a restriction enzyme after bisulfite reaction. *non-specific PCR product. (PPT 452 kb)

Supplementary Table I

Peripheral blood parameters in male 6-month and 1-year-old normal and bGH transgenic mice (n=10) (DOC 37 kb)

Supplementary Table II

Peripheral blood parameters in male 2-month old GHR-/- and GHR-/- after exposure to IGF-1 (n=10). (DOC 31 kb)

About this article

Cite this article

Kucia, M., Masternak, M., Liu, R. et al. The negative effect of prolonged somatotrophic/insulin signaling on an adult bone marrow-residing population of pluripotent very small embryonic-like stem cells (VSELs). AGE 35, 315–330 (2013). https://doi.org/10.1007/s11357-011-9364-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-011-9364-8

Keywords

Navigation