Skip to main content
Log in

Influence of two methods of dietary restriction on life history features and aging of the cricket Acheta domesticus

AGE Aims and scope Submit manuscript

Abstract

Studying aging is constrained using vertebrates by their longevity, size, ethical restrictions, and expense. The key insect model, Drosophila melanogaster, is holometabolous. Larvae feed on yeast in moist media and adults sponge food. Most aging studies are restricted to adults. Another key model, the nematode Caenorhabditis elegans, feeds on bacteria in moist media. For either invertebrate refreshing test materials, preventing degradation and obtaining accurate dosing are difficult even with synthetic media. The cricket Acheta domesticus has a short lifespan (∼120 days at 30°C) and is omnivorous. Age-matched cohorts are easily obtained from eggs. The life cycle is hemimetabolous and nymphs eat the same foods as adults. Growth is easily monitored, gender can be differentiated before maturity, and maturation is indicated by wings and mature genitalia. Crickets can be reared in large numbers at low cost. Test materials can be mixed into food and ingestion rates or mass budgets easily assessed. Here, we validate the cricket as a model of aging by testing two fundamental methods of restricting food intake: time-restricted access to food and dietary dilution. Growth, maturation, survivorship, and longevity varied with treatments and genders. Intermittent feeding (which is ineffective in flies) significantly extended longevity of crickets. Dietary dilution also extended longevity via remarkable prolongation of the juvenile period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Albers MA, Bradley TJ (2006) Fecundity in Drosophila following desiccation is dependent on nutrition and selection regime. Physiol Biochem Zool 79:857–865

    Article  PubMed  Google Scholar 

  • Alcedo J, Kenyon C (2004) Regulation of C. elegans longevity by specific gustatory and olfactory neurons. Neuron 41:45–55

    Article  PubMed  CAS  Google Scholar 

  • Archer CR, Royle N, South S, Selman C, Hunt J (2009) Nutritional geometry provides food for thought. J Gerontol A Biol Sci Med Sci 64A:956–959

    Article  Google Scholar 

  • Behmer ST (2009) Insect herbivore nutrient regulation. Ann Rev Entomol 54:165–187

    Article  CAS  Google Scholar 

  • Berner D, Blanckenhorn WU, Korner C (2005) Grasshoppers cope with low host plant quality by compensatory feeding and food selection: N limitation challenged. Oikos 111:525–533

    Article  Google Scholar 

  • Bross TG, Rogina B, Helfand SL (2005) Behavioral, physical, and demographic changes in Drosophila populations through dietary restriction. Aging Cell 4:309–317

    Article  PubMed  CAS  Google Scholar 

  • Burger JMS, Hwangbo DS, Corby-Harris V, Promislow DEL (2007) The functional costs and benefits of dietary restriction in Drosophila. Aging Cell 6:63–71

    Article  PubMed  CAS  Google Scholar 

  • Carey JR, Liedo P, Harshman L, Zhang U, Muller HG, Partridge L, Wang JL (2002) Life history response of Mediterranean fruit flies to dietary restriction. Aging Cell 1:140–148

    Article  PubMed  CAS  Google Scholar 

  • Carey JR, Harshman L, Liedo P, Muller HG, Wang JL, Zhang Z (2008) Longevity-fertility trade-offs in the Tephritid fruit fly, Anastrepha ludens, across dietary-restriction gradients. Aging Cell 7:470–477

    Article  PubMed  CAS  Google Scholar 

  • Carvalho GB, Kapahi P, Benzer S (2005) Direct quantification of food intake reveals compensatory ingestion upon dietary restriction in Drosophila. Nat Meth 2:813–815

    Article  CAS  Google Scholar 

  • Cayre M, Strambi C, Charpin P, Augier R, Meyer MR, Edwards JS, Strambi A (1996) Neurogenesis in adult insect mushroom bodies. J Comp Neurol 371:300–310

    Article  PubMed  CAS  Google Scholar 

  • Chippindale AK, Leroi AM, Kim SB, Rose MR (1993) Phenotypic plasticity and selection in Drosophila life-history evolution. I. Nutrition and the cost of reproduction. J Evol Biol 6:171–193

    Article  Google Scholar 

  • Cooper TM, Mockett RJ, Sohal BH, Sohal RS, Orr WC (2004) Effect of caloric restriction on life span of the housefly, Musca domestica. FASEB J 18:1591–1593

    PubMed  CAS  Google Scholar 

  • Dmitriew C, Rowe L (2007) Effects of early resource limitation and compensatory growth on lifetime fitness in the ladybird beetle (Harmonia axyridis). J Evol Biol 20:1298–1310

    Article  PubMed  CAS  Google Scholar 

  • Everitt AV, Rattan SIS, Le Couteur DG, de Cabo R (eds) (2010) Calorie restriction, aging and longevity. Springer, Dordrecht

    Google Scholar 

  • Fanson BG, Weldon CW, Perez-Staples D, Simpson SJ, Taylor PW (2009) Nutrients, not caloric restriction, extend lifespan in Queensland fruit flies (Bactrocera tryoni). Aging Cell 8:514–523

    Article  PubMed  CAS  Google Scholar 

  • Finch CE (2007) Biology of human longevity: inflammation, nutrition, and aging in the evolution of life spans. Academic Press Incorporated, Massachusetts

    Google Scholar 

  • Gotthard K, Nylin S, Wiklund C (1994) Adaptive variation in growth rate: life history costs and consequences in the speckled wood butterfly, Pararge aegeria. Oecologia 99:281–289

    Article  Google Scholar 

  • Grandison RC, Wong R, Bass TM, Partridge L, Piper MDW (2009a) Effect of a standardized dietary restriction protocol on multiple laboratory strains of Drosophila melanogaster. PLoS ONE 4(1):e4067. doi:10.1371/journal.pone.0004067

    Article  PubMed  Google Scholar 

  • Grandison RC, Piper MDW, Partridge L (2009b) Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462:1061–1064

    Article  PubMed  CAS  Google Scholar 

  • Greer EL, Brunet A (2009) Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell 8:113–127

    Article  PubMed  CAS  Google Scholar 

  • Holliday R (1989) Food, reproduction and longevity: is the extended lifespan of calorie-restricted animals an evolutionary adaptation? Bioassays 10:125–127

    Article  CAS  Google Scholar 

  • Ja WW, Carvalho GB, Mak EM, de la Rosa NN, Fang AY, Liong JC, Brummel T, Benzer S (2007) Prandiology of Drosophila and the CAFE assay. PNAS 104:8253–8256

    Article  PubMed  CAS  Google Scholar 

  • Ja WW, Carvalho GB, Zid BM, Mak EM, Brummel T, Benzer S (2009) Water- and nutrient-dependent effects of dietary restriction on Drosophila lifespan. PNAS 106:18633–18637

    Article  PubMed  CAS  Google Scholar 

  • Jones SA, Raubenheimer D (2001) Nutritional regulation in nymphs of the German cockroach, Blattella germanica. J Insect Physiol 47:1169–1180

    Article  PubMed  CAS  Google Scholar 

  • Le Bourg E, Minois N (2005) Does dietary restriction really increase longevity in Drosophila melanogaster? Ageing Res Rev 4:409–421

    Article  PubMed  Google Scholar 

  • Lee KP, Raubenheimer D, Simpson SJ (2004) The effects of nutritional imbalance on compensatory feeding for cellulose-mediated dietary dilution in a generalist caterpillar. Physiol Entomol 29:108–117

    Article  Google Scholar 

  • Lee KP, Simpson SJ, Clissold FJ, Brooks R, Ballard JWO, Taylor PW, Soran N, Raubenheimer D (2008) Lifespan and reproduction in Drosophila: new insights from nutritional geometry. PNAS 105:2498–2503

    Article  PubMed  CAS  Google Scholar 

  • Libert S, Zwiener J, Chu X, VanVoorhies W, Roman G, Pletcher SD (2007) Regulation of Drosophila life span by olfaction and food-derived odors. Science 315:1133–1137

    Article  PubMed  CAS  Google Scholar 

  • Magwere T, Chapman T, Partridge L (2004) Sex differences in the effect of dietary restriction on life span and mortality rates in female and male Drosophila melanogaster. J Gerontol A Biol Sci Med Sci 59:3–9

    Article  PubMed  Google Scholar 

  • Mair W, Dillin A (2008) Aging and survival: the genetics of life span extension by dietary restriction. Ann Rev Biochem 77:727–754

    Article  PubMed  CAS  Google Scholar 

  • Mair W, Goymer P, Pletcher SD, Partridge L (2003) Demography of dietary restriction and death in Drosophila. Science 301:1731–1733

    Article  PubMed  CAS  Google Scholar 

  • Mair W, Piper MDW, Partridge L (2005) Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol 3(7):e223. doi:10.1371/journal.pbio.0030223

    Article  PubMed  Google Scholar 

  • Maklakov AA, Simpson SJ, Zajitschek F, Hall MD, Dessmann J, Clissold F, Raubenheimer D, Bonduriansky R, Brooks RC (2008) Sex-specific fitness effects of nutrient intake on reproduction and lifespan. Curr Biol 18:1062–1066

    Article  PubMed  CAS  Google Scholar 

  • Maklakov AA, Hall MD, Simpson SJ, Dessmann J, Clissold FJ, Zajitschek F, Lailvaux SP, Raubenheimer D, Bonduriansky R, Brooks RC (2009) Sex differences in nutrient-dependent reproductive ageing. Aging Cell 8:324–330

    Article  PubMed  CAS  Google Scholar 

  • McDonald RB, Ramsey JJ (2010) Honoring Clive McCay and 75 years of calorie restriction research. J Nutr 140:1205–1210

    Article  PubMed  CAS  Google Scholar 

  • Metcalfe NB, Monaghan P (2001) Compensation for a bad start: grow now, pay later? Trends Ecol Evol 16:254–260

    Article  PubMed  Google Scholar 

  • Metcalfe NB, Monaghan P (2003) Growth versus lifespan: perspectives from evolutionary ecology. Exp Gerontol 38:935–940

    Article  PubMed  Google Scholar 

  • Min KJ, Tatar M (2006) Drosophila diet restriction in practice: do flies consume fewer nutrients. Mech Ageing Dev 127:93–96

    Article  PubMed  CAS  Google Scholar 

  • Min KJ, Flatt T, Kulaots I, Tatar M (2007) Counting calories in Drosophila diet restriction. Exp Gerontol 42:247–251

    Article  PubMed  Google Scholar 

  • Mito T, Noji S (2008) The two-spotted cricket Gryllus bimaculatus: an emerging model for developmental and regeneration studies. In: Behringer RR (ed) Emerging model organisms, vol 1. Cold Spring Harbor Laboratory Press, New York, pp 331–346

    Google Scholar 

  • Morehouse NI, Rutowski RL (2010) Developmental responses to variable diet composition in a butterfly: the role of nitrogen, carbohydrates and genotype. Oikos 119:636–645

    Article  Google Scholar 

  • Nakamura T, Mito T, Bando T, Ohuchi H, Noji S (2008) Dissecting insect leg regeneration through RNA interference. Cell Mol Life Sci 65:64–72

    Article  PubMed  CAS  Google Scholar 

  • Partridge L, Tower J (2007) Yeast a feast: the fruit fly Drosophila as a model organism for research into aging. In: Guarente L, Partridge L, Wallace DC (eds). Mol Biol Aging. Cold Spring Harbor Monograph Series 51:267–308

  • Partridge L, Piper MDW, Mair W (2005) Dietary restriction in Drosophila. Mech Ageing Dev 126:938–950

    Article  PubMed  CAS  Google Scholar 

  • Pearl R (1928) The Rate of Living. University of London Press, London

    Google Scholar 

  • Piper MDW, Partridge L (2007) Dietary restriction in Drosophila: delayed aging or experimental artefact? PLoS Genet 3(4):e57. doi:10.1371/journal.pgen.0030057

    Article  PubMed  Google Scholar 

  • Promislow DEL, Harvey PH (1990) Living fast and dying young: a comparative analysis of life history variation among mammals. J Zool 220:417–437

    Article  Google Scholar 

  • Raubenheimer D, Jones SA (2006) Nutritional imbalance in an extreme generalist omnivore: tolerance and recovery through complementary food selection. Anim Behav 71:1253–1262

    Article  Google Scholar 

  • Rollo CD (1984) Resource allocation and time budgeting in adults of the cockroach, Periplaneta americana: the interaction of behaviour and metabolic reserves. Res Popul Ecol 26:150–187

    Article  Google Scholar 

  • Rollo CD (1986) A test of the principle of allocation using two sympatric species of cockroaches. Ecology 67:616–628

    Article  Google Scholar 

  • Rollo CD (1994) Phenotypes: their epigenetics, ecology and evolution. Chapman & Hall, London

    Google Scholar 

  • Rollo CD (2002) Growth negatively impacts the life span of mammals. Evol Dev 4:55–61

    Article  PubMed  Google Scholar 

  • Rollo CD (2010a). Aging and the mammalian regulatory triumvirate. Aging and Disease 1(2): Online http://www.aginganddisease.org/earlyedition.html

  • Rollo CD (2010b) Circadian redox regulation. In: Pantopoulos K, Schipper HM (eds) Principles of free radical biomedicine. Nova Science Publishers, New York

    Google Scholar 

  • Rollo CD, Hawryluk MD (1988) Compensatory scope and resource allocation in two species of aquatic snails. Ecology 69:146–156

    Article  Google Scholar 

  • Rollo CD, Carlson J, Sawada M (1996) Accelerated aging of giant transgenic mice is associated with elevated free radical processes. Can J Zool 74:606–620

    Article  CAS  Google Scholar 

  • Scriber JM, Slansky F (1981) The nutritional ecology of immature insects. Ann Rev Entomol 26:183–211

    Article  Google Scholar 

  • Shaw P, Ocorr K, Bodmer R, Oldham S (2008) Drosophila aging 2006/2007. Exp Gerontol 43:5–10

    Article  PubMed  CAS  Google Scholar 

  • Simpson SJ, Raubenheimer D (2010) The nutritional geometry of aging. In: Everitt AV, Rattan SIS, Le Couteur DG, de Cabo R (eds) Calorie restriction, aging and longevity. Springer, Dordrecht, pp 111–122

    Chapter  Google Scholar 

  • Skorupa DA, Dervisefendic A, Zwiener J, Pletcher SD (2008) Dietary composition specifies consumption, obesity and lifespan in Drosophila melanogaster. Aging Cell 7:478–490

    Article  PubMed  CAS  Google Scholar 

  • Surbey MK, Rollo CD (1991) Physiological and behavioural compensation for food quality and quantity in the slug Lehmannia marginata. Malacologia 33:193–198

    Google Scholar 

  • Tatar M (2007) Diet restriction in Drosophila melanogaster. In: Mobbs, CV, Yen K, Hof PR (ed). Mechanisms of Dietary Restriction in Aging and Disease. Interdiscipl Topics Gerontol Basel, Karger, 35:115-136. doi:10.1159/000096559

  • Taborsky B (2006) The influence of juvenile and adult environments on life-history trajectories. Proc R Soc Lond B 273:741–750

    Article  Google Scholar 

  • Tettweiler G, Miron M, Jenkins M, Sonenberg N, Lasko PF (2005) Starvation and oxidative stress resistance in Drosophila are mediated through the eIF4E-binding protein, d4E-BP. Genes Dev 19:1840–1843

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Hung CCY, Randall DJ (2006) The comparative physiology of food deprivation: from feast to famine. Ann Rev Physiol 68:223–251

    Article  Google Scholar 

  • Weindruch R, Walford RL (1988) The retardation of aging and disease by dietary restriction. Charles C. Thomas, Springfield

    Google Scholar 

  • Williams GC (1957) Pleiotropy, natural selection and the evolution of senescence. Evolution 11:398–411

    Article  Google Scholar 

  • Woodring JP, Clifford CW, Beckman BR (1979) Food utilization and metabolic efficiency in larval and adult house crickets. J Insect Physiol 25:903–912

    Article  Google Scholar 

  • Yang Y, Joern A (1994) Influence of diet quality, developmental stage, and temperature on food residence time in the grasshopper Melanoplus differentialis. Physiol Zool 67:598–616

    Google Scholar 

Download references

Acknowledgements

We would like to thank our editor Dr. Donald K. Ingram for facilitating this publication and three anonymous reviewers that contributed thorough and helpful suggestions that greatly improved the manuscript. We also thank Merryl George and Sumeha Khurana for help with cricket care and data entry. This study was supported by a grant from the Natural Sciences and Engineering Research Council of Canada to C.D. Rollo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. David Rollo.

About this article

Cite this article

Lyn, J.C., Naikkhwah, W., Aksenov, V. et al. Influence of two methods of dietary restriction on life history features and aging of the cricket Acheta domesticus . AGE 33, 509–522 (2011). https://doi.org/10.1007/s11357-010-9195-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-010-9195-z

Keywords

Navigation