Skip to main content
Log in

Lipid metabolism in long-lived families: the Leiden Longevity Study

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Mechanisms underlying the variation in human life expectancy are largely unknown, but lipid metabolism and especially lipoprotein size was suggested to play an important role in longevity. We have performed comprehensive lipid phenotyping in the Leiden Longevity Study (LLS). By applying multiple logistic regression analysis we tested for the first time the effects of parameters in lipid metabolism (i.e., classical serum lipids, lipoprotein particle sizes, and apolipoprotein E levels) on longevity independent of each other. Parameters in lipid metabolism were measured in offspring of nonagenarian siblings from 421 families of the LLS (n = 1,664; mean age, 59 years) and in the partners of the offspring as population controls (n = 711; mean age, 60 years). In the initial model, where lipoprotein particles sizes, classical serum lipids and apolipoprotein E were included, offspring had larger low-density lipoprotein (LDL) particle sizes (p = 0.017), and lower triglyceride levels (p = 0.026), indicating that they displayed a more beneficial lipid profile. After backwards regression only LDL size (p = 0.014) and triglyceride levels (p = 0.05) were associated with offspring from long-lived families. Sex-specific backwards regression analysis revealed that LDL particle sizes were associated with male longevity (increase in log odds ratio (OR) per unit = 0.21; p = 0.023). Triglyceride levels (decrease OR per unit = 0.22; p = 0.01), but not LDL particle size, were associated with female longevity. Due to the analysis of a comprehensive lipid profile, we confirmed an important role of lipid metabolism in human longevity, with LDL size and triglyceride levels as major predicting factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Adams ER, Nolan VG, Andersen SL, Perls TT, Terry DF (2008) Centenarian offspring: start healthier and stay healthier. J Am Geriatr Soc 56(11):2089–2092

    Article  PubMed  Google Scholar 

  • Barzilai N, Gabriely I, Gabriely M, Iankowitz N, Sorkin JD (2001) Offspring of centenarians have a favorable lipid profile. J Am Geriatr Soc 49(1):76–79

    Article  PubMed  CAS  Google Scholar 

  • Barzilai N, Atzmon G, Schechter C, Schaefer EJ, Cupples AL, Lipton R, Cheng S, Shuldiner AR (2003) Unique lipoprotein phenotype and genotype associated with exceptional longevity. JAMA 290(15):2030–2040

    Article  PubMed  CAS  Google Scholar 

  • Carr MC, Hokanson JE, Zambon A, Deeb SS, Barrett PH, Purnell JQ, Brunzell JD (2001) The contribution of intraabdominal fat to gender differences in hepatic lipase activity and low/high density lipoprotein heterogeneity. J Clin Endocrinol Metab 86(6):2831–2837

    Article  PubMed  CAS  Google Scholar 

  • El Harchaoui K, van der Steeg WA, Stroes ES, Kuivenhoven JA, Otvos JD, Wareham NJ, Hutten BA, Kastelein JJ, Khaw KT, Boekholdt SM (2007) Value of low-density lipoprotein particle number and size as predictors of coronary artery disease in apparently healthy men and women: the EPIC-Norfolk prospective population study. J Am Coll Cardiol 49(5):547–553

    Article  PubMed  CAS  Google Scholar 

  • El Harchaoui K, Arsenault BJ, Franssen R, Despres JP, Hovingh GK, Stroes ES, Otvos JD, Wareham NJ, Kastelein JJ, Khaw KT, Boekholdt SM (2009) High-density lipoprotein particle size and concentration and coronary risk. Ann Intern Med 150(2):84–93

    PubMed  Google Scholar 

  • Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (2001) Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 285(19):2486–2497

    Article  Google Scholar 

  • Festa A, Williams K, Hanley AJ, Otvos JD, Goff DC, Wagenknecht LE, Haffner SM (2005) Nuclear magnetic resonance lipoprotein abnormalities in prediabetic subjects in the insulin resistance atherosclerosis study. Circulation 111(25):3465–3472

    Article  PubMed  Google Scholar 

  • Freedman DS, Otvos JD, Jeyarajah EJ, Shalaurova I, Cupples LA, Parise H, D'Agostino RB, Wilson PW, Schaefer EJ (2004) Sex and age differences in lipoprotein subclasses measured by nuclear magnetic resonance spectroscopy: the Framingham study. Clin Chem 50(7):1189–1200

    Article  PubMed  CAS  Google Scholar 

  • Garvey WT, Kwon S, Zheng D, Shaughnessy S, Wallace P, Hutto A, Pugh K, Jenkins AJ, Klein RL, Liao Y (2003) Effects of insulin resistance and type 2 diabetes on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance. Diabetes 52(2):453–462

    Article  PubMed  CAS  Google Scholar 

  • Gentile M, Panico S, Jossa F, Mattiello A, Ubaldi S, Marotta G, Pauciullo P, Rubba P (2008) Small dense LDL particles and metabolic syndrome in a sample of middle-aged women. Findings from progetto atena. Clin Chim Acta 388(1–2):179–183

    Article  PubMed  CAS  Google Scholar 

  • Goff DC Jr, D'Agostino RB Jr, Haffner SM, Otvos JD (2005) Insulin resistance and adiposity influence lipoprotein size and subclass concentrations. Results from the insulin resistance atherosclerosis study. Metabolism 54(2):264–270

    Article  PubMed  CAS  Google Scholar 

  • Heijmans BT, Beekman M, Houwing-Duistermaat JJ, Cobain MR, Powell J, Blauw GJ, van der Ouderaa F, Westendorp RG, Slagboom PE (2006) Lipoprotein particle profiles mark familial and sporadic human longevity. PLoS Med 3(12):e495

    Article  PubMed  Google Scholar 

  • Hokanson JE, Austin MA (1996) Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk 3(2):213–219

    Article  PubMed  CAS  Google Scholar 

  • Kathiresan S, Otvos JD, Sullivan LM, Keyes MJ, Schaefer EJ, Wilson PW, D'Agostino RB, Vasan RS, Robins SJ (2006) Increased small low-density lipoprotein particle number: a prominent feature of the metabolic syndrome in the framingham heart study. Circulation 113(1):20–29

    Article  PubMed  CAS  Google Scholar 

  • Lemieux I, Pascot A, Lamarche B, Prud'homme D, Nadeau A, Bergeron J, Despres JP (2002) Is the gender difference in LDL size explained by the metabolic complications of visceral obesity? Eur J Clin Investig 32(12):909–917

    Article  CAS  Google Scholar 

  • Magkos F, Mohammed BS, Mittendorfer B (2009) Plasma lipid transfer enzymes in non-diabetic lean and obese men and women. Lipids 44(5):459–464

    Article  PubMed  CAS  Google Scholar 

  • Mooijaart SP, Berbee JF, van Heemst D, Havekes LM, de Craen AJ, Slagboom PE, Rensen PC, Westendorp RG (2006) ApoE plasma levels and risk of cardiovascular mortality in old age. PLoS Med 3(6):e176

    Article  PubMed  Google Scholar 

  • Mora S, Otvos JD, Rifai N, Rosenson RS, Buring JE, Ridker PM (2009) Lipoprotein particle profiles by nuclear magnetic resonance compared with standard lipids and apolipoproteins in predicting incident cardiovascular disease in women. Circulation 119(7):931–939

    Article  PubMed  CAS  Google Scholar 

  • Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A (2007) Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 298(3):299–308

    Article  PubMed  CAS  Google Scholar 

  • Oeppen J, Vaupel JW (2002) Demography. Broken limits to life expectancy. Science 296(5570):1029–1031

    Article  PubMed  CAS  Google Scholar 

  • Otvos JD (2002) Measurement of lipoprotein subclass profiles by nuclear magnetic resonance spectroscopy. Clin Lab 48(3–4):171–180

    PubMed  CAS  Google Scholar 

  • Otvos JD, Jeyarajah EJ, Bennett DW, Krauss RM (1992) Development of a proton nuclear magnetic resonance spectroscopic method for determining plasma lipoprotein concentrations and subspecies distributions from a single, rapid measurement. Clin Chem 38(9):1632–1638

    PubMed  CAS  Google Scholar 

  • Perls T, Kohler IV, Andersen S, Schoenhofen E, Pennington J, Young R, Terry D, Elo IT (2007) Survival of parents and siblings of supercentenarians. J Gerontol A Biol Sci Med Sci 62(9):1028–1034

    PubMed  Google Scholar 

  • Rozing MP, Westendorp RG, Frolich M, de Craen AJ, Beekman M, Heijmans BT, Mooijaart SP, Blauw GJ, Slagboom PE, van Heemst HD (2009) Human insulin/IGF-1 and familial longevity at middle age. Aging (Albany, NY) 1(8):714–722

    CAS  Google Scholar 

  • Sarwar N, Danesh J, Eiriksdottir G, Sigurdsson G, Wareham N, Bingham S, Boekholdt SM, Khaw KT, Gudnason V (2007) Triglycerides and the risk of coronary heart disease: 10, 158 incident cases among 262, 525 participants in 29 Western prospective studies. Circulation 115(4):450–458

    Article  PubMed  CAS  Google Scholar 

  • Schoenmaker M, de Craen AJ, de Meijer PH, Beekman M, Blauw GJ, Slagboom PE, Westendorp RG (2006) Evidence of genetic enrichment for exceptional survival using a family approach: the Leiden Longevity Study. Eur J Hum Genet 14(1):79–84

    PubMed  Google Scholar 

  • Terry DF, Wilcox MA, McCormick MA, Perls TT (2004) Cardiovascular disease delay in centenarian offspring. J Gerontol A Biol Sci Med Sci 59(4):385–389

    PubMed  Google Scholar 

  • van Vlijmen BJ, van den Maagdenberg AM, Gijbels MJ, van der Boom H, HogenEsch H, Frants RR, Hofker MH, Havekes LM (1994) Diet-induced hyperlipoproteinemia and atherosclerosis in apolipoprotein E3-Leiden transgenic mice. J Clin Invest 93(4):1403–1410

    Article  PubMed  Google Scholar 

  • Veniant MM, Beigneux AP, Bensadoun A, Fong LG, Young SG (2008) Lipoprotein size and susceptibility to atherosclerosis-insights from genetically modified mouse models. Curr Drug Targets 9(3):174–189

    Article  PubMed  CAS  Google Scholar 

  • Westendorp RG, van Heemst D, Rozing MP, Frolich M, Mooijaart SP, Blauw GJ, Beekman M, Heijmans BT, de Craen AJ, Slagboom PE (2009) Nonagenarian siblings and their offspring display lower risk of mortality and morbidity than sporadic nonagenarians: the Leiden Longevity Study. J Am Geriatr Soc 57(9):1634–1637

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank all the participants of the Leiden Longevity Study for their contribution. We are grateful to Marja Kersbergen and Margo van Schie for determining apoE plasma levels and standard lipid parameters.

This study is supported by grants from Innovation Oriented research Program IOP on genomics (SenterNovem; IGE5007), the Dutch Heart Foundation (NHS2006B195), the Netherlands Consortium for Healthy Ageing (050 60 810), and by a stimulation grant (05040202, Healthy Ageing) from the Netherlands Genomics Initiative (NGI)/Netherlands Organization for scientific research (NWO).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Anika A. M. Vaarhorst.

Additional information

LUMC (AAM Vaarhorst, PE Slagboom, BT Heijmans, M Beekman, JN Kok, JW Jukema), WU (Y Lu, EJM Feskens, M Muller), RIVM (JMA Boer, MET Dollé), UNIMAAS/UHM (MMJ van Greevenbroek, APM Gorgels), and the VU (DI Boomsma)

About this article

Cite this article

Vaarhorst, A.A.M., Beekman, M., Suchiman, E.H.D. et al. Lipid metabolism in long-lived families: the Leiden Longevity Study. AGE 33, 219–227 (2011). https://doi.org/10.1007/s11357-010-9172-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-010-9172-6

Keywords

Navigation