Skip to main content
Log in

Mitochondria-mediated hormetic response in life span extension of calorie-restricted Saccharomyces cerevisiae

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Calorie restriction (CR) is the only proven regimen, which confers lifespan extension benefits across the various phyla right from unicellular organisms like yeast to primates. In a bid to elucidate the mechanism of calorie-restriction-mediated life span extension, the role of mitochondria in the process was investigated. In this study, we found that the mitochondrial content in CR cells remains unaltered as compared to cells grown on nonrestricted media. However, mitochondria isolated from CR cells showed increased respiration and elevated reactive oxygen species levels without augmenting adenosine triphosphate (ATP) generation. The antioxidant defense system was amplified in CR mitochondria, and in CR cells a cross protection to hydrogen-peroxide-induced stress was also observed. Moreover, we also documented that a functional electron transport chain was vital for the life span extension benefits of calorie restriction. Altogether, our results indicate that calorie restriction elicits mitohormetic effect, which ultimately leads to longevity benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarwal S, Sharma S, Agrawal V, Roy N (2005) Caloric restriction augments ROS defense in S. cerevisiae, by a Sir2p independent mechanism. Free Radic Res 39:55–62

    Article  PubMed  CAS  Google Scholar 

  • Allen RG, Tresini M (2000) Oxidative stress and gene regulation. Free Radic Biol Med 28:463–499

    Article  PubMed  CAS  Google Scholar 

  • Barja G (2002) The quantitative measurement of H2O2 generation in isolated mitochondria. J Bioenerg Biomembr 34:227–233

    Article  PubMed  CAS  Google Scholar 

  • Barros MH, Bandy B, Tahara EB, Kowaltowski AJ (2004) Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae. J Biol Chem 279:49883–49888

    Article  PubMed  CAS  Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    PubMed  CAS  Google Scholar 

  • Borghouts C, Benguria A, Wawryn J, Jazwinski SM (2004) Rtg2 protein links metabolism and genome stability in yeast longevity. Genetics 166:765–777

    Article  PubMed  CAS  Google Scholar 

  • Cadenas E (2004) Mitochondrial free radical production and cell signaling. Mol Aspects Med 25:17–26

    Article  PubMed  CAS  Google Scholar 

  • Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, Deutsch WA, Smith SR, Ravussin E (2007) Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med 4:e76

    Article  PubMed  Google Scholar 

  • Davidson JF, Schiestl RH (2001) Mitochondrial respiratory electron carriers are involved in oxidative stress during heat stress in Saccharomyces cerevisiae. Mol Cell Biol 21:8483–8489

    Article  PubMed  CAS  Google Scholar 

  • Flower TR, Chesnokova LS, Froelich CA, Dixon C, Witt SN (2005) Heat shock prevents alpha-synuclein-induced apoptosis in a yeast model of Parkinson's disease. J Mol Biol 351:1081–1100

    Article  PubMed  CAS  Google Scholar 

  • Gems D, Partridge L (2008) Stress-response hormesis and aging: “that which does not kill us makes us stronger”. Cell Metab 7:200–203

    Article  PubMed  CAS  Google Scholar 

  • Grant CM, MacIver FH, Dawes IW (1997) Mitochondrial function is required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. FEBS Lett 410:219–222

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. New York, Oxford University Press, pp 1–35

    Google Scholar 

  • Hatefi Y (1978) Preparation and properties of NADH: ubiquinone oxidoreductase (complex I), EC 1.6.5.3. Methods Enzymol 53:11–14

    Article  PubMed  CAS  Google Scholar 

  • Inoue Y, Matsuda T, Sugiyama K, Izawa S, Kimura A (1999) Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J Biol Chem 274:27002–27009

    Article  PubMed  CAS  Google Scholar 

  • Jamieson DJ (1992) Saccharomyces cerevisiae has distinct adaptive responses to both hydrogen peroxide and menadione. J Bacteriol 174:6678–6681

    PubMed  CAS  Google Scholar 

  • Jiang JC, Jaruga E, Repnevskaya MV, Jazwinski SM (2000) An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J 14:2135–2137

    PubMed  CAS  Google Scholar 

  • Joseph Horne T, Hollomon DW, Wood PM (2001) Fungal respiration: a fusion of standard and alternative components. Biochim Biophys Acta 1504:179–195

    Article  PubMed  CAS  Google Scholar 

  • Kayser EB, Sedensky MM, Morgan PG (2004) The effects of complex I function and oxidative damage on lifespan and anesthetic sensitivity in Caenorhabditis elegans. Mech Ageing Dev 125:455–464

    Article  PubMed  CAS  Google Scholar 

  • Kharade SV, Mittal N, Das SP, Sinha P, Roy N (2005) Mrg19 depletion increases S. cerevisiae lifespan by augmenting ROS defence. FEBS Lett 579:6809–6813

    Article  PubMed  CAS  Google Scholar 

  • Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71:952–958

    Article  PubMed  CAS  Google Scholar 

  • Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289:2126–2128

    Article  PubMed  CAS  Google Scholar 

  • Lin SJ, Kaeberlein M, Andalis AA, Sturtz LA, Defossez PA, Culotta VC, Fink GR, Guarente L (2002) Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418:344–348

    Article  PubMed  CAS  Google Scholar 

  • Lin SJ, Ford E, Haigis M, Liszt G, Guarente L (2004) Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev 18:12–16

    Article  PubMed  CAS  Google Scholar 

  • McCay CM, Crowell MF, Maynard LA (1935) The effect of retarded growth upon the length of life span and upon the ultimate body size: one figure. J Nutr 10:63–79

    CAS  Google Scholar 

  • Meisinger C, Sommer T, Pfanner N (2000) Purification of Saccharomyces cerevisiae mitochondria devoid of microsomal and cytosolic contaminations. Anal Biochem 287:339–342

    Article  PubMed  CAS  Google Scholar 

  • Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, Moncada S, Carruba MO (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310:314–317

    Article  PubMed  CAS  Google Scholar 

  • Raha S, Robinson BH (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 25:502–508

    Article  PubMed  CAS  Google Scholar 

  • Rattan SI (2006) Theories of biological aging: genes, proteins, and free radicals. Free Radic Res 40:1230–1238

    Article  PubMed  CAS  Google Scholar 

  • Rattan SI (2008) Hormesis in aging. Ageing Res Rev 7:63–78

    Article  PubMed  Google Scholar 

  • Roy N, Runge KW (2000) Two paralogs involved in transcriptional silencing that antagonistically control yeast life span. Curr Biol 10:111–114

    Article  PubMed  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M (2007) Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 6:280–293

    Article  PubMed  CAS  Google Scholar 

  • Shama S, Lai CY, Antoniazzi JM, Jiang JC, Jazwinski SM (1998) Heat stress-induced life span extension in yeast. Exp Cell Res 245:379–388

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273:59–63

    Article  PubMed  CAS  Google Scholar 

  • Tapia PC (2006) Sublethal mitochondrial stress with an attendant stoichiometric augmentation of reactive oxygen species may precipitate many of the beneficial alterations in cellular physiology produced by caloric restriction, intermittent fasting, exercise and dietary phytonutrients: “mitohormesis” for health and vitality. Med Hypotheses 66:832–843

    Article  PubMed  CAS  Google Scholar 

  • Thorpe GW, Fong CS, Alic N, Higgins VJ, Dawes IW (2004) Cells have distinct mechanisms to maintain protection against different reactive oxygen species: oxidative-stress-response genes. Proc Natl Acad Sci U S A 101:6564–6569

    Article  PubMed  CAS  Google Scholar 

  • Westermann B, Neupert W (2000) Mitochondria-targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae. Yeast 16:1421–1427

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Westermann B at the Institut für Physiologische Chemie, Germany, for providing pVT100UmtGFP. We acknowledge Dr Girish Varshney and Sukhwinder Kaur at the Institute of Microbial Technology, Sector 39, Chandigarh, India, for their assistance in the flow cytometry experiments. Senior research fellowship from the Indian Council of Medical Research to Praveen Kumar Sharma is also acknowledged. We thank our lab members KD Prajapati and Nitish Mittal for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilanjan Roy.

About this article

Cite this article

Sharma, P.K., Agrawal, V. & Roy, N. Mitochondria-mediated hormetic response in life span extension of calorie-restricted Saccharomyces cerevisiae . AGE 33, 143–154 (2011). https://doi.org/10.1007/s11357-010-9169-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-010-9169-1

Keywords

Navigation