Skip to main content

Advertisement

Log in

A classification-based approach to mapping particulate organic matter (POM) in inland water using OLCI images

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Particulate organic matter (POM) plays a major role in freshwater ecosystems by serving as a bridge for the conversion of various nutrients. The composition and sources of POM in inland lakes are complex, making it difficult to estimate its concentration accurately via remote sensing. Therefore, a classification-based method based on the sources and composition of POM is proposed for estimating POM concentrations in inland lakes. In this study, 379 samples were collected from ten lakes in the Yangtze River Delta (YRD) at different times. A water-type classification method based on OLCI \(Rrs(560)\), \(Rrs(620)\), \(Rrs(681)\), and \(Rrs(709)\) was developed for POM estimation based on biological and optical characteristics. Water type 1 is relatively clear, and POM may originate from aquatic vegetation or sediment. Water type 2 was dominated by inorganic suspended matter, and POM mainly originated from the attachment and entrainment of inorganic minerals. Water type 3 is an algae-dominated water body, and POM is mainly derived from fresh algal particles and the microbial degradation of phytoplankton. Therefore, specific POM estimation algorithms were developed for each water type. OLCI \(Rrs(490)\), \(Rrs(665)\), \(Rrs(673)\), and \(Rrs(754)\) were used for water type 1; \(Rrs(620)\), \(Rrs(865)\), and \(Rrs(885)\) were adopted for water type 2; and \(Rrs(620)\), \(Rrs(665)\), and \(Rrs(709)\) were selected for water type 3. Using an independent dataset to evaluate the estimation accuracy of the developed algorithm, the results show that the estimation performance of this algorithm is significantly improved compared to the two other algorithms used; the mean absolute percentage errors (MAPE) decreased from 72.56% and 52.21% to 32.61%, and the root mean square errors (RMSE) decreased from 3.05 mg/L and 2.24 mg/L to 1.75 mg/L. A random error analysis of the atmospheric correction demonstrated that this algorithm is robust and can still perform well within a random error of 30%. Finally, this method was successfully applied to map the POM concentrations in the YRD using OLCI images acquired on November 12, 2020.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data and materials are available and reasonable.

References

  • Ackleson SG, Arnone RA, Sydor M, Gould JRA, Frouin RJ (1997) Remote sensing reflectance of case 2 waters. Ocean Optics XIII 2963:222–227

  • Allison DB, Stramski D, Mitchell BG (2010) Empirical ocean color algorithms for estimating particulate organic carbon in the Southern Ocean. J Geophys Res: Oceans 115(C10)

  • Bi S, Li Y, Wang Q, Lyu H, Liu G, Zheng Z, Du C, Mu M, Xu J, Lei S, Miao S (2018) Inland water atmospheric correction based on turbidity classification using OLCI and SLSTR synergistic observations. Remote Sens 10(7):1002

  • Bian Y, Zhao Y, Lyu H, Guo F, Li Y, Xu J, Liu H, Ni S (2021) Nineteen years of trophic state variation in large lakes of the Yangtze River delta region derived from MODIS images. Remote Sens 13(21):4322

  • Blondeau-Patissier D, Gower JFR, Dekker AG, Phinn SR, Brando VE (2014) A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Prog Oceanogr 123:123–144

    Article  Google Scholar 

  • Chen W, Westerhoff P, Leenheer JA, Booksh K (2003) Fluorescence excitation−emission matrix regional integration to quantify spectra for dissolved organic matter. Environ Sci Technol 37:5701–5710

    Article  CAS  Google Scholar 

  • Chester R (2009) Marine geochemistry. John Wiley & Sons

    Google Scholar 

  • Çoban-Yıldız Y, Chiavari G, Fabbri D, Gaines AF, Galletti G, Tuğrul S (2000) The chemical composition of Black Sea suspended particulate organic matter: pyrolysis-GC/MS as a complementary tool to traditional oceanographic analyses. Mar Chem 69:55–67

    Article  Google Scholar 

  • Coble PG (1996) Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar Chem 51:325–346

    Article  CAS  Google Scholar 

  • Coble PG, Del Castillo CE, Avril B (1998) Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep Sea Res Part II 45:2195–2223

    Article  CAS  Google Scholar 

  • Coble PG, Lead J, Baker A, Reynolds DM, Spencer RGM (2014) Aquatic organic matter fluorescence. Cambridge University Press

  • Dera J, Woźniak B (2010) Solar radiation in the Baltic Sea. Oceanologia 52:533–582

    Article  Google Scholar 

  • Doron M, Bélanger S, Doxaran D, Babin M (2011) Spectral variations in the near-infrared ocean reflectance. Remote Sens Environ 115:1617–1631

    Article  Google Scholar 

  • Du Y, An S, He H, Wen S, Xing P, Duan H (2022) Production and transformation of organic matter driven by algal blooms in a shallow lake: role of sediments. Water Res 219:118560

  • Duan H, Feng L, Ma R, Zhang Y, Arthur Loiselle S (2014) Variability of particulate organic carbon in inland waters observed from MODIS Aqua imagery. Environ Res Lett 9(8):084011

  • Dzierzbicka-Głowacka L, Kuliński K, Maciejewska A, Jakacki J, Pempkowiak J (2010) Particulate organic carbon in the southern Baltic Sea: numerical simulations and experimental data. Oceanologia 52:621–648

    Article  Google Scholar 

  • Fellman JB, Hood E, Spencer RGM (2010) Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review. Limnol Oceanogr 55:2452–2462

    Article  CAS  Google Scholar 

  • Fründ R, Lüdemann HD (1989) The quantitative analysis of solution- and CPMAS-C-13 NMR spectra of humic material. Sci Total Environ 81–82:157–168

    Article  Google Scholar 

  • Gardner WD, Mishonov AV, Richardson MJ (2006) Global POC concentrations from in-situ and satellite data. Deep Sea Res Part II 53:718–740

    Article  CAS  Google Scholar 

  • Gilerson AA, Gitelson AA, Zhou J, Gurlin D, Moses W, Ioannou I, Ahmed SA (2010) Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands. Optics Express 18(23):24109–24125

  • Grey J, Jones RI, Sleep D (2001) Seasonal changes in the importance of the source of organic matter to the diet of zooplankton in Loch Ness, as indicated by stable isotope analysis. Limnol Oceanogr 46:505–513

    Article  Google Scholar 

  • Gu B, Chapman AD, Schelske CL (2006) Factors controlling seasonal variations in stable isotope composition of particulate organic matter in a softwater eutrophic lake. Limnol Oceanogr 51:2837–2848

    Article  CAS  Google Scholar 

  • He W, Chen M, Schlautman MA, Hur J (2016) Dynamic exchanges between DOM and POM pools in coastal and inland aquatic ecosystems: a review. Sci Total Environ 551–552:415–428

    Article  Google Scholar 

  • He S, Le C, He J, Liu N (2022) Empirical algorithm for detecting coccolithophore blooms through satellite observation in the Barents Sea. Remote Sens Environ 270:112886

  • Hu B, Wang P, Wang C, Bao T (2022) Photogeochemistry of particulate organic matter in aquatic systems: a review. Sci Total Environ 806:150467

  • Hudson N, Baker A, Reynolds D (2007) Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters—a review. River Res Appl 23:631–649

    Article  Google Scholar 

  • Huguet A, Vacher L, Relexans S, Saubusse S, Froidefond JM, Parlanti E (2009) Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org Geochem 40:706–719

    Article  CAS  Google Scholar 

  • Hygum BH, Petersen JW, Søndergaard M (1997) Dissolved organic carbon released by zooplankton grazing activity-a high-quality substrate pool for bacteria. J Plankton Res 19:97–111

    Article  CAS  Google Scholar 

  • ISO N. 7027–1 (International Organization for Standardization) (2016) Qualité de l'eau-Détermination de la turbidité-Partie

  • Jiang G, Ma R, Loiselle SA, Duan H, Su W, Cai W, Huang C, Yang J, Yu W (2015) Remote sensing of particulate organic carbon dynamics in a eutrophic lake (Taihu Lake, China). Sci Total Environ 532:245–254

    Article  CAS  Google Scholar 

  • Kratzer S, Kyryliuk D, Brockmann C (2020) Inorganic suspended matter as an indicator of terrestrial influence in Baltic Sea coastal areas — Algorithm development and validation and ecological relevance Remote Sensing of Environment 237:111609

    Article  Google Scholar 

  • Krishnaswami S, Lal D (1977) Particulate organic carbon in Atlantic surface waters. Nature 266:713–716

    Article  CAS  Google Scholar 

  • Kuliński K, Pempkowiak J (2011) The carbon budget of the Baltic Sea. Biogeosciences 8:3219–3230

    Article  Google Scholar 

  • Le C, Li Y, Zha Y, Sun D (2008) Specific absorption coefficient and the phytoplankton package effect in Lake Taihu, China. Hydrobiologia 619:27–37

    Article  Google Scholar 

  • Lee C, Wakeham S, Arnosti C (2004) Particulate organic matter in the sea: the composition conundrum. Ambio 33:565–575

    Article  Google Scholar 

  • Lee K-S, Kim T-H, Yun Y-S, Shin S-MJKJoRS (2001) Spectral characteristics of shallow turbid water near the shoreline on inter-tidal flat. 17:131-139

  • Lee R G, Hooker S, Mobley C D, et al. (2002) Above-water radiance and remote sensing reflectance measurement and analysis protocols. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3 210004:171

  • Lin J, Lyu H, Miao S, Pan Y, Wu Z, Li Y, Wang Q (2018) A two-step approach to mapping particulate organic carbon (POC) in inland water using OLCI images. Ecol Ind 90:502–512

    Article  CAS  Google Scholar 

  • Liu D, Duan H, Yu S, Shen M, Xue K (2019) Human-induced eutrophication dominates the bio-optical compositions of suspended particles in shallow lakes: implications for remote sensing. Sci Total Environ 667:112–123

    Article  CAS  Google Scholar 

  • Matthews MW, Bernard S, Winter K (2010) Remote sensing of cyanobacteria-dominant algal blooms and water quality parameters in Zeekoevlei, a small hypertrophic lake, using MERIS. Remote Sens Environ 114:2070–2087

    Article  Google Scholar 

  • Meler J, Ostrowska M, Stoń-Egiert J, Zabłocka M (2017) Seasonal and spatial variability of light absorption by suspended particles in the southern Baltic: a mathematical description. J Mar Syst 170:68–87

    Article  Google Scholar 

  • Mélin F, Vantrepotte V (2015) How optically diverse is the coastal ocean? Remote Sens Environ 160:235–251

    Article  Google Scholar 

  • Miao S, Lyu H, Wang Q, Li Y, Wu Z, Du C, Xu J, Bi S, Mu M, Lei S (2019) Estimation of terrestrial humic-like substances in inland lakes based on the optical and fluorescence characteristics of chromophoric dissolved organic matter (CDOM) using OLCI images. Ecol Indic 101:399–409

    Article  CAS  Google Scholar 

  • Mishra S, Mishra DR, Lee Z, Tucker CS (2013) Quantifying cyanobacterial phycocyanin concentration in turbid productive waters: a quasi-analytical approach. Remote Sens Environ 133:141–151

    Article  Google Scholar 

  • Morel A (1988) Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters). J Geophys Res 93(C9):10749–10768

  • Osburn CL, Handsel LT, Mikan MP, Paerl HW, Montgomery MT (2012) Fluorescence tracking of dissolved and particulate organic matter quality in a river-dominated estuary. Environ Sci Technol 46:8628–8636

    Article  CAS  Google Scholar 

  • Ostrom NE, Long DT, Bell EM, Beals T (1998) The origin and cycling of particulate and sedimentary organic matter and nitrate in Lake Superior. Chem Geol 152:13–28

    Article  CAS  Google Scholar 

  • Paerl HW, Xu H, McCarthy MJ, Zhu G, Qin B, Li Y, Gardner WS (2011) Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy. Water Res 45:1973–1983

    Article  CAS  Google Scholar 

  • Parson T, Mait Y, Laui C (1984) A manual of chemical and biological methods for sea water analysis, per gamine press. New York, 173

  • Pempkowiak J, Obarska-Pempkowiak H (2002) Long-term changes in sewage sludge stored in a reed bed. Sci Total Environ 297:59–65

    Article  CAS  Google Scholar 

  • Ruddick KG, De Cauwer V, Park Y-J, Moore G (2006) Seaborne measurements of near infrared water-leaving reflectance: the similarity spectrum for turbid waters. Limnol Oceanogr 51:1167–1179

    Article  Google Scholar 

  • Schartau M, Riethmüller R, Flöser G, van Beusekom JEE, Krasemann H, Hofmeister R, Wirtz K (2019) On the separation between inorganic and organic fractions of suspended matter in a marine coastal environment. Prog Oceanogr 171:231–250

    Article  Google Scholar 

  • Shi K, Li Y, Li L, Lu H (2013) Absorption characteristics of optically complex inland waters: implications for water optical classification. J Geophys Res Biogeosci 118:860–874

    Article  Google Scholar 

  • Simon M, Grossart HP, Schweitzer B, Ploug H (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol 28:175–211

    Article  Google Scholar 

  • Spinrad RW, Bidigare RR, Ondrusek ME, Morrow JH, Kiefer DA (1990) In-vivo absorption properties of algal pigments. Ocean Optics X SPIE 1302:290–302

  • Stedmon CA, Bro R (2008) Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol Oceanogr Methods 6:572–579

    Article  CAS  Google Scholar 

  • Stedmon CA, Markager S (2005) Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol Oceanogr 50:686–697

    Article  CAS  Google Scholar 

  • Stramska M (2005) Variability of particulate organic carbon concentration in the north polar Atlantic based on ocean color observations with Sea-viewing Wide Field-of-view Sensor (SeaWiFS). J Geophys Res 110(C10)

  • Stramski D, Reynolds RA, Babin M, Kaczmarek S, Lewis MR, Röttgers R, Sciandra A, Stramska M, Twardowski MS, Franz BA, Claustre H (2008) Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans. Biogeosciences 5:171–201

    Article  CAS  Google Scholar 

  • Sun D, Li Y, Wang Q, Le C, Huang C, Shi K (2011) Development of optical criteria to discriminate various types of highly turbid lake waters. Hydrobiologia 669:83–104

    Article  Google Scholar 

  • Sun D, Li Y, Wang Q, Le C, Lv H, Huang C, Gong S (2012) Specific inherent optical quantities of complex turbid inland waters, from the perspective of water classification. Photochem Photobiol Sci 11:1299–1312

  • Szymczycha B, Maciejewska A, Winogradow A, Pempkowiak J (2014) Could submarine groundwater discharge be a significant carbon source to the southern Baltic Sea? Oceanologia 56:327–347

    Article  Google Scholar 

  • Volkman JK, Tanoue E (2002) Chemical and biological studies of particulate organic matter in the ocean. J Oceanogr 58:265–279

    Article  CAS  Google Scholar 

  • Wang J, Sheng Y, Tong TSD (2014) Monitoring decadal lake dynamics across the Yangtze Basin downstream of Three Gorges Dam. Remote Sens Environ 152:251–269

    Article  Google Scholar 

  • Wang S, Li J, Zhang B, Lee Z, Spyrakos E, Feng L, Liu C, Zhao H, Wu Y, Zhu L, Jia L, Wan W, Zhang F, Shen Q, Tyler AN, Zhang X (2020) Changes of water clarity in large lakes and reservoirs across China observed from long-term MODIS. Remote Sens Environ 247:111949

  • Wei J, Yu X, Lee Z, Wang M, Jiang L (2020) Improving low-quality satellite remote sensing reflectance at blue bands over coastal and inland waters. Remote Sens Environ 250:112029

  • Wen Z, Song K, Liu G, Lyu L, Shang Y, Fang C, Du J (2020) Characterizing DOC sources in China’s Haihe River basin using spectroscopy and stable carbon isotopes. Environ Pollut 258:113684

  • Westerhoff P, Chen W, Esparza M (2001) Fluorescence analysis of a standard fulvic acid and tertiary treated wastewater. J Environ Qual 30:2037–2046

    Article  CAS  Google Scholar 

  • Woźniak SB (2014) Simple statistical formulas for estimating biogeochemical properties of suspended particulate matter in the southern Baltic Sea potentially useful for optical remote sensing applications. Oceanologia 56:7–39

    Article  Google Scholar 

  • Woźniak BS, Meler J, Lednicka B, Zdun A, Stoń-Egiert J (2011) Inherent optical properties of suspended particulate matter in the southern Baltic Sea. Oceanologia 53:691–729

    Google Scholar 

  • Woźniak SB, Sagan S, Zabłocka M, Stoń-Egiert J, Borzycka K (2018) Light scattering and backscattering by particles suspended in the Baltic Sea in relation to the mass concentration of particles and the proportions of their organic and inorganic fractions. J Mar Syst 182:79–96

    Article  Google Scholar 

  • Xu J, Li Y, Lyu H, Lei S, Mu M, Bi S, Xu J, Xu X, Miao S, Li L, Yan X (2021) Simultaneous inversion of concentrations of POC and its endmembers in lakes: a novel remote sensing strategy. Sci Total Environ 770:145249

  • Xu J, Liu H, Lin J, Lyu H, Dong X, Li Y, Guo H, Wang H (2022) Long-term monitoring particulate composition change in the Great Lakes using MODIS data. Water Res 222:118932

  • Yao Y, Wang P, Wang C, Hou J, Miao L, Yuan Y, Wang T, Liu C (2016) Assessment of mobilization of labile phosphorus and iron across sediment-water interface in a shallow lake (Hongze) based on in situ high-resolution measurement. Environ Pollut 219:873–882

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang B, Wang X, Li J, Feng S, Zhao Q, Liu M, Qin B (2007) A study of absorption characteristics of chromophoric dissolved organic matter and particles in Lake Taihu, China. Hydrobiologia 592:105–120

    Article  CAS  Google Scholar 

  • Zhang F, Li J, Shen Q, Zhang B, Wu C, Wu Y, Wang G, Wang S, Lu Z (2015) Algorithms and schemes for Chlorophyll a estimation by remote sensing and optical classification for Turbid Lake Taihu, China. IEEE J Select Topics Appl Earth Observ Remote Sens 8:350–364

    Article  Google Scholar 

  • Zhao Y, Song K, Shang Y, Shao T, Wen Z, Lv L (2017) Characterization of CDOM of river waters in China using fluorescence excitation-emission matrix and regional integration techniques. J Geophys Res Biogeosci 122:1940–1953

    Article  CAS  Google Scholar 

  • Zhao Z, Huang C, Meng L, Lu L, Wu Y, Fan R, Li S, Sui Z, Huang T, Huang C, Yang H, Zhang L (2021) Eutrophication and lakes dynamic conditions control the endogenous and terrestrial POC observed by remote sensing: Modeling and application. Ecol Indic 129:107907

  • Zhao Z, Cai X, Huang C, Shi K, Li J, Jin J, Yang H, Huang T (2022) A novel semianalytical remote sensing retrieval strategy and algorithm for particulate organic carbon in inland waters based on biogeochemical-optical mechanisms. Remote Sens Environ 280:113213

  • Zhao Minghui LX (2014) Temporal and spatial distributions and sources of particulate organic matter in the Shenzhen Bay and adjacent coastal waters from 2000 to 2011. China Environ Sci 34:2905–2911

    Google Scholar 

  • Zheng Z, Ren J, Li Y, Huang C, Liu G, Du C, Lyu H (2016) Remote sensing of diffuse attenuation coefficient patterns from Landsat 8 OLI imagery of turbid inland waters: a case study of Dongting Lake. Sci Total Environ 573:39–54

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to the graduate student of remote sensing application of Nanjing Normal University, China, for their help in laboratory analysis.

Funding

This research is supported by the National Natural Science Foundation of China (grant numbers 42271341 and U2102207).

Author information

Authors and Affiliations

Authors

Contributions

Huaiqing Liu: writing – original draft, methodology, writing – review and editing. Wenyu Liu: data curation, investigation, writing – review and editing, formal analysis. Jie Lin: conceptualization, methodology, resources. Heng Lyu: conceptualization, writing – review and editing, funding acquisition. Yunmei Li: writing – review and editing, validation. Fangfang Chen: investigation, writing – review and editing. Ying Zhao: formal analysis. Jiafeng Xu: supervision, formal analysis, investigation. Honglei Guo: resources, investigation.

Corresponding author

Correspondence to Heng Lyu.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

The authors have consented to publication.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Rongrong Wan

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Liu, W., Lin, J. et al. A classification-based approach to mapping particulate organic matter (POM) in inland water using OLCI images. Environ Sci Pollut Res 30, 64203–64220 (2023). https://doi.org/10.1007/s11356-023-26876-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-26876-8

Keywords

Navigation