Skip to main content
Log in

Electrocatalytic degradation of methyl orange and 4-nitrophenol on a Ti/TiO2-NTA/La-PbO2 electrode: electrode characterization and operating parameters

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The anode material plays a crucial role in the process of electrochemical oxidation. Herein, a TiO2 nanotube arrays (TiO2-NTA) intermediate layer and La-PbO2 catalytic layer were synthesized on a Ti surface by the electrochemical anodic oxidation and electrochemical deposition technology, respectively. The prepared Ti/TiO2-NTA/La-PbO2 electrode was used as an electrocatalytic oxidation anode for pollutant degradation. Scanning electron microscopy (SEM) analysis showed that the TiO2-NTA layer possessed a highly ordered and well-aligned nanotube array morphology, and the La-PbO2 layer with angular cone cluster was uniform and tightly bonded. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis indicated that the intermediate layer primarily consisted of the anatase crystal structure of TiO2 and the catalyst layer was made of La-PbO2. Electrochemical analysis revealed that Ti/TiO2-NTA/La-PbO2 electrode exhibited higher oxidation peak current, electrochemical active surface area, and oxygen evolution potential (OEP, 1.64 V). Using methyl orange and 4-nitrophenol as model pollutants, electrocatalytic properties of the prepared Ti/TiO2-NTA/La-PbO2 electrode were systematically investigated under different conditions, and the electrochemical degradation fitted well with the pseudo-first-order kinetics model. Efficient anodic oxidation of model pollutants was mainly attributed to the indirect oxidation mediated by hydroxyl radicals (•OH). The total organic carbon (TOC) removal efficiency of methyl orange and 4-nitrophenol was 70.2 and 72.8%, and low energy consumption (2.50 and 1.89 kWh g−1) was achieved after 240 min of electrolysis under the conditions of initial concentration of model pollutant, electrode spacing, and electrolyte concentration were 50 mg L−1, 2 cm, and 0.1 mol L−1, respectively. This work provided a new strategy to develop the high-efficiency electrode for refractory pollutants degradation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Afsharnia M, Kianmehr M, Biglari H, Dargahi A, Karimi A (2018) Disinfection of dairy wastewater effluent through solar photocatalysis processes. Water Sci Eng 11:214–219

    Article  Google Scholar 

  • Ahmed MB, Zhou JL, Huu Hao N, Guo W, Thomaidis NS, Xu J (2017) Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review. J Hazard Mater 323:274–298

    Article  CAS  Google Scholar 

  • Chen CH, Peng YP (2022) LED-driven photocatalysis of toluene, trichloroethylene and formaldehyde by cuprous oxide modified titanate nanotube arrays. Chemosphere 286:131608

    Article  CAS  Google Scholar 

  • Chen JM, Xia YJ, Dai QZ (2015) Electrochemical degradation of chloramphenicol with a novel Al doped PbO2 electrode: performance, kinetics and degradation mechanism. Electrochim Acta 165:277–287

    Article  CAS  Google Scholar 

  • Chen M, Pan S, Zhang C, Wang C, Zhang WQ, Chen ZF, Zhao X, Zhao YX (2020) Electrochemical oxidation of reverse osmosis concentrates using enhanced TiO2-NTA/SnO2-Sb anodes with/without PbO2 layer. Chem Eng J 399:125756

    Article  CAS  Google Scholar 

  • Choudhary V, Vellingiri K, Thayyil MI, Philip L (2021) Removal of antibiotics from aqueous solutions by electrocatalytic degradation. Environ Sci-Nano 8:1133–1176

    Article  CAS  Google Scholar 

  • Duan PZ, Hu X, Ji ZY, Yang XM, Sun ZR (2018) Enhanced oxidation potential of Ti/SnO2-Cu electrode for electrochemical degradation of low-concentration ceftazidime in aqueous solution: performance and degradation pathway. Chemosphere 212:594–603

    Article  CAS  Google Scholar 

  • Duan PZ, Yang XM, Huang GL, Wei J, Sun ZR, Hu X (2019) La2O3-CuO2/CNTs electrode with excellent electrocatalytic oxidation ability for ceftazidime removal from aqueous solution. Colloid Surface A 569:119–128

    Article  CAS  Google Scholar 

  • Duan PZ, Gao SH, Lei JW, Li X, Hu X (2020a) Electrochemical oxidation of ceftazidime with graphite/CNT-Ce/PbO2-Ce anode: parameter optimization, toxicity analysis and degradation pathway. Environ Pollut 263:114436

  • Duan XY, Wang WY, Wang Q, Sui XY, Li N, Chang LM (2020b) Electrocatalytic degradation of perfluoroocatane sulfonate (PFOS) on a 3D graphene-lead dioxide (3DG-PbO2) composite anode: electrode characterization, degradation mechanism and toxicity. Chemosphere 260:127587

    Article  CAS  Google Scholar 

  • Duan PZ, Chen DD, Hu X (2021) Tin dioxide decorated on Ni-encapsulated nitrogen-doped carbon nanotubes for anodic electrolysis and persulfate activation to degrade cephalexin: mineralization and degradation pathway. Chemosphere 269:128740

    Article  CAS  Google Scholar 

  • Duan XY, Wang Q, Tu SQ, Wang WY, Sui XY, Chang LM (2022) Electrocatalytic degradation of 2,4-dichlorophenol by a 3DG-PbO2 powdered anode: experimental and theoretical insights. Sep Purif Technol 282:120003

    Article  CAS  Google Scholar 

  • Fu C, Li M, Li H, Li C, Wu XG, Yang B (2017) Fabrication of Au nanoparticle/TiO2 hybrid films for photoelectrocatalytic degradation of methyl orange. J Alloy Compd 692:727–733

    Article  CAS  Google Scholar 

  • Guo XL, Wan JF, Yu XJ, Lin YH (2016) Study on preparation of SnO2-TiO2/nano-graphite composite anode and electro-catalytic degradation of ceftriaxone sodium. Chemosphere 164:421–429

    Article  CAS  Google Scholar 

  • Guo D, Guo YB, Huang YX, Chen YY, Dong XC, Chen H, Li SP (2021) Preparation and electrochemical treatment application of Ti/Sb-SnO2-Eu&rGO electrode in the degradation of clothianidin wastewater. Chemosphere 265:129126

    Article  CAS  Google Scholar 

  • Hasan Z, Cho DW, Chon CM, Yoon K, Song H (2016) Reduction of p-nitrophenol by magnetic Co-carbon composites derived from metal organic frameworks. Chem Eng J 298:183–190

    Article  CAS  Google Scholar 

  • Hou MF, Li FB, Liu XM, Wang XG, Wan HF (2007) The effect of substituent groups on the reductive degradation of azo dyes by zerovalent iron. J Hazard Mater 145:305–314

    Article  CAS  Google Scholar 

  • Hu X, Yu Y, Sun ZR (2016) Preparation and characterization of cerium-doped multiwalled carbon nanotubes electrode for the electrochemical degradation of low-concentration ceftazidime in aqueous solutions. Electrochim Acta 199:80–91

    Article  CAS  Google Scholar 

  • Hu C, Zhao Q, Zang GL, Luo JT, Liu Q (2022) Preparation and characterization of a novel Ni-doped TiO2 nanotube-modifie d inactive electrocatalytic electrode for the electrocatalytic degradation of phenol wastewater. Electrochim Acta 405:139758

    Article  CAS  Google Scholar 

  • Hunge YM, Yadav AA, Kang SW, Kim H, Fujishima A, Terashima C (2021) Nanoflakes-like nickel cobaltite as active electrode material for 4-nitrophenol reduction and supercapacitor applications. J Hazard Mater 419:126453

    Article  CAS  Google Scholar 

  • Ji WL, Xiong YJ, Wang Y, Zhang TC, Yuan SJ (2022) Multilayered TNAs/SnO2/PPy/β-PbO2 anode achieving boosted electrocatalytic oxidation of As(III). J Hazard Mater 430:128449

    Article  CAS  Google Scholar 

  • Kong J, Shi S, Kong L, Zhu X, Ni J (2007) Preparation and characterization of PbO2 electrodes doped with different rare earth oxides. Electrochim Acta 53:2048–2054

    Article  CAS  Google Scholar 

  • Kumar DR, Kesavan S, Baynosa ML, Shim JJ (2017) 3,5-Diamino-1,2,4-triazole@electrochemically reduced graphene oxide film modified electrode for the electrochemical determination of 4-nitrophenol. Electrochim Acta 246:1131–1140

    Article  CAS  Google Scholar 

  • Lin H, Niu JF, Xu JL, Huang HO, Li D, Yue ZH, Feng CH (2013a) Highly efficient and mild electrochemical mineralization of long-chain perfluorocarboxylic acids (C9–C10) by Ti/SnO2-Sb-Ce, Ti/SnO2-Sb/Ce-PbO2, and Ti/BDD Electrodes. Environ Sci Technol 47:13039–13046

  • Lin H, Niu JF, Xu JL, Li Y, Pan YH (2013b) Electrochemical mineralization of sulfamethoxazole by Ti/SnO2-Sb/Ce-PbO2 anode: kinetics, reaction pathways, and energy cost evolution. Electrochim Acta 97:167–174

  • Liu Y, Liu HL, Ma J, Li JJ (2011) Investigation on electrochemical properties of cerium doped lead dioxide anode and application for elimination of nitrophenol. Electrochim Acta 56:1352–1360

    Article  CAS  Google Scholar 

  • Liu XX, Min LF, Yu XY, Zhou Z, Sha L, Zhang ST (2021) Changes of photoelectrocatalytic, electrocatalytic and pollutant degradation properties during the growth of β-PbO2 into black titanium oxide nanoarrays. Chem Eng J 417:127996

    Article  CAS  Google Scholar 

  • Lu JJ, Gu YH, Chen Y, Yan X, Guo YJ, Lang WZ (2019) Ultrahigh permeability of graphene-based membranes by adjusting D-spacing with poly (ethylene imine) for the separation of dye wastewater. Sep Purif Technol 210:737–745

    Article  CAS  Google Scholar 

  • Martinez JSB, Gonzalez AS, Lopez MC, Ayala FE, Mijangos JC, Resendez JDT, Vong YM, Rocha JM, Bustos EB (2022) Electrochemical degradation of amoxicillin in acidic aqueous medium using TiO2-based electrodes modified by oxides of transition metals. Environ Sci Pollut R 29:42130–42145

    Article  CAS  Google Scholar 

  • Mpofu AB, Oyekola OO, Welz PJ (2021) Anaerobic treatment of tannery wastewater in the context of a circular bioeconomy for developing countries. J Clean Prod 296:126490

    Article  CAS  Google Scholar 

  • Niu JF, Lin H, Gong C, Sun XM (2013) Theoretical and experimental insights into the electrochemical mineralization mechanism of perfluorooctanoic acid. Environ Sci Technol 47:14341–14349

    Article  CAS  Google Scholar 

  • Peng YP, Peng LC, Chen KF, Chen CH, Chang KL, Chen KS, Dang Z, Lu GN, Sun J (2020) Degradation of trichloroethylene by photoelectrochemically activated persulfate. Chemosphere 254:126796

    Article  CAS  Google Scholar 

  • Qian XB, Peng KF, Xu L, Tang SY, Wang WL, Zhang M, Niu JF (2022) Electrochemical decomposition of PPCPs on hydrophobic Ti/SnO2-Sb/La-PbO2 anodes: relationship between surface hydrophobicity and decomposition performance. Chem Eng J 429:132309

    Article  CAS  Google Scholar 

  • Samarghandi MR, Dargahi A, Rahmani A, Shabanloo A, Ansari A, Nematollahi D (2021) Application of a fluidized three-dimensional electrochemical reactor with Ti/SnO2-Sb/β-PbO2 anode and granular activated carbon particles for degradation and mineralization of 2,4-dichlorophenol: process optimization and degradation pathway. Chemosphere 279:130640

    Article  CAS  Google Scholar 

  • Skoumal M, Rodríguez R, Cabot PL, Centellas F, Garrido JA, Arias C, Rillas EB (2009) Electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton degradation of the drug ibuprofen in acid aqueous medium using platinum and boron-doped diamond anodes. Electrochim Acta 54:2077–2085

    Article  CAS  Google Scholar 

  • Wang PF, Tang H, Ao YH, Wang C, Hou J, Qian J, Li Y (2016a) In-situ growth of Ag3VO4 nanoparticles onto BiOCl nanosheet to form a heterojunction photocatalyst with enhanced performance under visible light irradiation. J Alloy Comp 668:1–7

  • Wang Y, Shen CC, Zhang MM, Zhang BT, Yu YG (2016b) The electrochemical degradation of ciprofloxacin using a SnO2-Sb/Ti anode: influencing factors, reaction pathways and energy demand. Chem Eng J 296(15):79–89

  • Wang C, Yin LF, Xu ZS, Niu JF, Hou LA (2017) Electrochemical degradation of enrofloxacin by lead dioxide anode: kinetics, mechanism and toxicity evaluation. Chem Eng J 326:911–920

    Article  CAS  Google Scholar 

  • Wang C, Niu JF, Yin L, Huang JX, Hou LA (2018) Electrochemical degradation of fluoxetine on nanotube array intercalated anode with enhanced electronic transport and hydroxyl radical production. Chem Eng J 346:662–671

    Article  CAS  Google Scholar 

  • Wang HJ, Li ZY, Zhang FY, Wang YX, Zhang X, Wang JB, He XW (2021a) Comparison of Ti/Ti4O7, Ti/Ti4O7-PbO2-Ce, and Ti/Ti4O7 nanotube array anodes for electro-oxidation of p-nitrophenol and real wastewater. Sep Purif Technol 266:118600

  • Wang Q, Tu SQ, Wang WY, Chen W, Duan XY, Chang LM (2021b) Optimized Indium modified Ti/PbO2 anode for electrochemical degradation of antibiotic cefalexin in aqueous solutions. Colloid Surface A 628:127244

  • Wei FQ, Liao DX, Lin Y, Hu C, Ju JQ, Chen YS, Feng DL (2021) Electrochemical degradation of reverse osmosis concentrate (ROC) using the electrodeposited Ti/TiO2-NTs/PbO2 electrode. Sep Purif Technol 258:118056

    Article  CAS  Google Scholar 

  • Wu JQ, Liu YF, Yang XJ, Wang JL, Yang J (2021) Intercalation modification of FeOCl and its application in dye wastewater treatment. Chinese Chem Lett 32:2503–2508

    Article  CAS  Google Scholar 

  • Xia YJ, Bian XZ, Xia Y, Zhou W, Wang L, Fan SQ, Xiong P, Zhan TT, Dai QZ, Chen JM (2020) Effect of indium doping on the PbO2 electrode for the enhanced electrochemical oxidation of aspirin: an electrode comparative study. Sep Purif Technol 237:116321

    Article  CAS  Google Scholar 

  • Xie RZ, Meng XY, Sun PZ, Niu JF, Jiang WJ, Bottomley L, Li DO, Chen YS, Crittenden J (2017) Electrochemical oxidation of ofloxacin using a TiO2-based SnO2-Sb/polytetrafluoroethylene resin-PbO2 electrode: reaction kinetics and mass transfer impact. Appl Catal B-Environ 203:515–525

    Article  CAS  Google Scholar 

  • Xu M, Wang ZC, Wang FW, Hong P, Wang CY, Ouyang XM, Zhu CG, Wei YJ, Hun YH, Fang WY (2016) Fabrication of cerium doped Ti/nanoTiO2/PbO2 electrode with improved electrocatalytic activity and its application in organic degradation. Electrochim Acta 201:240–250

    Article  CAS  Google Scholar 

  • Xu L, Ma X, Niu JF, Chen J, Zhou CZ (2019) Removal of trace naproxen from aqueous solution using a laboratory-scale reactive flow-through membrane electrode. J Hazard Mater 379:120692

    Article  CAS  Google Scholar 

  • Xu L, Tang SY, Li D, Ma X, Zhu YQ, Lu JJ, Niu JF (2021) Electrochemical degradation of tris(2-chloroethyl) phosphate by metal-oxide-coated Ti anodes: kinetics, toxicity and mechanism. Sep Purif Technol 265:118489

    Article  CAS  Google Scholar 

  • Xue JQ, Ma SW, Bi Q, Zhang X, Guan WZ, Gao Y (2018) Revealing the modification mechanism of La-doped Ti/SnO2 electrodes related to the microelectronic structure by first-principles calculations. J Alloy Compd 747:423–430

    Article  CAS  Google Scholar 

  • Yan Y, Geng ZQ, Dai K, Guo X, Zhang F (2021) Decoupling mechanism of Acid Orange 7 decolorization and sulfate reduction by a caldanaerobacter dominated extreme-thermophilic consortium. J Hazard Mater 419:126498

    Article  CAS  Google Scholar 

  • Yang K, Lin H, Liang ST, Xie RZ, Lv SH, Niu JF, Chen J, Hu YY (2018) A reactive electrochemical filter system with an excellent penetration flux porous Ti/SnO2-Sb filter for efficient contaminant removal from water. RSC Adv 8:13933–13944

  • Yang H, Bi YF, Wang M, Chen C, Xu ZW, Chen K, Zhou Y, Zhang J, Niu QJ (2020) β-FeOOH self-supporting electrode for efficient electrochemical anodic oxidation process. Chemosphere 261:127674

    Article  CAS  Google Scholar 

  • Yang C, Shang SS, Li XY (2021) Fabrication of sulfur-doped TiO2 nanotube array as a conductive interlayer of PbO2 anode for efficient electrochemical oxidation of organic pollutants. Sep Purif Technol 258:118035

    Article  CAS  Google Scholar 

  • Yao YW, Teng GG, Yang Y, Ren BL, Cui LL (2019) Electrochemical degradation of neutral red on PbO2/α-Al2O3 composite electrodes: electrode characterization, byproducts and degradation mechanism. Sep Purif Technol 227:115684

    Article  CAS  Google Scholar 

  • Yu H, Oh S, Han Y, Lee S, Hong HJ (2021a) Modified cellulose nanofibril aerogel: tunable catalyst support for treatment of 4-Nitrophenol from wastewater. Chemosphere 285:131448

  • Yu NC, Wei JY, Gu ZS, Sun HL, Guo Y, Zong J, Li X, Ni P, Han ES (2021b) Electrocatalysis degradation of coal tar wastewater using a novel hydrophobic benzalacetone modified lead dioxide electrode. Chemosphere 289:133014

  • Yu CZ, Zhang F, Wang K, Luo TL, Zhou CZ (2022) High-efficiency electrochemical decomposition of artificial sweetener aspartame using a Ti3+ self-doped TiO2 nanotube arrays anode. J Environ Chem Eng 10:106950

    Article  CAS  Google Scholar 

  • Zhang Y, He P, Jia LP, Li CX, Liu HH, Wang S, Zhou SP, Dong FQ (2019) Ti/PbO2-Sm2O3 composite based electrode for highly efficient electrocatalytic degradation of alizarin yellow R. J Colloid Interf Sci 533:750–761

    Article  CAS  Google Scholar 

  • Zhang F, Wang WL, Xu L, Zhou CZ, Sun YL, Niu JF (2021) Treatment of Ni-EDTA containing wastewater by electrochemical degradation using Ti3+ self-doped TiO2 nanotube arrays anode. Chemosphere 278:130465

    Article  CAS  Google Scholar 

  • Zheng YH, Su WQ, Chen SY, Wu XZ, Chen XM (2011) Ti/SnO2-Sb2O5-RuO2/α-PbO2/β-PbO2 electrodes for pollutants degradation. Chem Eng J 174:304–309

    Article  CAS  Google Scholar 

  • Zhou CZ, Wang YP, Chen J, Niu JF (2019) Porous Ti/SnO2-Sb anode as reactive electrochemical membrane for removing trace antiretroviral drug stavudine from wastewater. Environ Int 133:105157

    Article  CAS  Google Scholar 

  • Zhuo QF, Deng SB, Yang B, Huang J, Yu G (2011) Efficient electrochemical oxidation of perfluorooctanoate using a Ti/SnO2-Sb-Bi anode. Environ Sci Technol 45:2973–2979

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (nos. 2019L0383 and 2019L0387), the Science and Technology Innovation Fund of Shanxi Agricultural University (nos. 2018YJ22 and 2018YJ25), the Shenzhen Fund in Special Foundation for Guiding Local Science and Technology Development of the Central Government (no. 2021Szvup001), the China Postdoctoral Science Foundation (no. 2021M690247), and the Excellent Doctors come to Shanxi to Reward Scientific Research Projects (no. SXYBKY2018024).

Author information

Authors and Affiliations

Authors

Contributions

Material preparation and data collection and analysis were performed by Zepeng Sun, Wenqing Yue, Ge Zhang, and Jianmei Bai. The first draft of the manuscript was written by Zepeng Sun. Yue Ni and Yuandong Wu designed the research, checked the manuscript, and gave amending advice on the manuscript. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yue Ni.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Communicated by Weiming Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1869 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Ni, Y., Wu, Y. et al. Electrocatalytic degradation of methyl orange and 4-nitrophenol on a Ti/TiO2-NTA/La-PbO2 electrode: electrode characterization and operating parameters. Environ Sci Pollut Res 30, 6262–6274 (2023). https://doi.org/10.1007/s11356-022-22610-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-22610-y

Keywords

Navigation