Skip to main content

Advertisement

Log in

Research on single/cooperative emission reduction strategy under different power structures

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This paper develops low-carbon decisions in a two-echelon supply chain considering consumers’ low-carbon preference and cap-and-trade (C&T) regulation. Two different power structures are considered, including manufacturer-dominated (MD) and retailer-dominated (RD) cases. The single emission reduction (SER) mode where only the manufacturer invests in low-carbon technology and the cooperative emission reduction (CER) mode where the manufacturer invests in low-carbon technology and the retailer invest in low-carbon promotion are investigated respectively. It is found that a relatively loose C&T regulation helps to promote the cooperation of supply chain enterprises. Under both MD and RD cases, CER mode is always a rational choice for supply chain enterprises. Under SER mode, the manufacturer’s profit will not always decrease when he loses the dominant position. However, the RD case is profitable for the retailer and the supply chain. Under CER mode, the dominant role is important for both the manufacturer and the retailer. However, the profit of the supply chain under RD case may be lower than that under MD case. Through numerical analysis, we found that the fluctuation of carbon price has a more significant impact on the manufacturer’s emission reduction decision under CER mode than that under SER mode. In addition, with the increase of unit carbon price, the RD case performs better than the MD case in promoting supply chain’s low-carbon level and profit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  • Adaman F, Karali N, Kumbaroglu G, Or İ, Özkaynak B, Zenginobuz Ü (2011) What determines urban households willingness to pay for CO2 emission reductions in Turkey: a contingent valuation survey. Energy Policy 39(2):689–698

    Article  Google Scholar 

  • Anand KS Giraud-Carrier FC 2020 Pollution regulation of competitive markets Manage Sci 66 9 4193 4206

    Article  Google Scholar 

  • Bai QG Xu JT Zhang YY 2018 Emission reduction decision and coordination of a make-to-order supply chain with two products under cap-and-trade regulation Comput Ind Eng 119 131 145

    Article  Google Scholar 

  • Bai QG Gong YM Jin MZ Xu XH 2019 Effects of carbon emission reduction on supply chain coordination with vendor-managed deteriorating product inventory Int J Prod Res 208 83 99

    Google Scholar 

  • Bai QG Chen MY Nikolaidis Y Xu JT 2021 Improving sustainability and social responsibility of a two-tier supply chain investing in emission reduction technology Appl Math Model 95 688 714

    Article  Google Scholar 

  • Chen X Hao G 2015 Sustainable pricing and production policies for two competing firms with carbon emissions tax Int J Prod Res 53 21 6408 6420

    Article  Google Scholar 

  • Chen W Chen J Ma Y 2021 Renewable energy investment and carbon emissions under cap-and trade mechanisms J Cleaner Prod 278 123341

    Article  Google Scholar 

  • Drake DF Kleindorfer PR Wassenhove LN Van 2016 Technology choice and capacity portfolios under emissions regulation Prod Oper Manag 25 6 1006 1025

    Article  Google Scholar 

  • Du SF Tang WZ Song M 2016 Low-carbon production with low-carbon premium in cap-and-trade regulation J Clean Prod 134 652 662

    Article  Google Scholar 

  • Entezaminia A Gharbi A Ouhimmou M 2021 A joint production and carbon trading policy for unreliable manufacturing systems under cap-and-trade regulation J Cleaner Prod 293 125973

    Article  Google Scholar 

  • Ghosh SK Seikh MR Chakrabortty M 2020 Analyzing a stochastic dual-channel supply chain under consumers’ low carbon preferences and cap-and-trade regulation Computers & Industrial Engineering 149 106765

    Article  Google Scholar 

  • Haddadsisakht A Ryan SM 2018 Closed-loop supply chain network design with multiple transportation modes under stochastic demand and uncertain carbon tax Int J Prod Econ 195 118 131

    Article  Google Scholar 

  • Hadi T Chaharsoogh SK Sheikhmohammad M Hafezalkotob A 2020 Pricing strategy for a green supply chain with hybrid production modes under government intervention J Cleaner Prod 268 121945

    Article  Google Scholar 

  • Hong Z Guo X 2019 Green product supply chain contracts considering environmental responsibilities Omega 83 155 166

    Article  Google Scholar 

  • Hong Z Dai W Luh H Yang C 2018 Optimal configuration of a green product supply chain with guaranteed service time and emission constraints Eur J Oper Res 266 2 663 677

    Article  Google Scholar 

  • Ilyas S Hu ZN Wiwattanakornwong K 2021 Unleashing the role of top management and government support in green supply chain management and sustainable development goals Environ Sci Pollut Res 27 8210 8223

    Article  Google Scholar 

  • Ji JN Zhang ZY Yang L 2017a Carbon emission reduction decisions in the retail-/dual-channel supply chain with consumers’ preference J Clean Prod 141 852 867

    Article  Google Scholar 

  • Ji JN Zhang ZY Yang L 2017b Comparisons of initial carbon allowance allocation rules in an O2O retail supply chain with the cap-and-trade regulation Int J Prod Econ 187 68 84

    Article  Google Scholar 

  • Khan SAR Dong QL 2017 Impact of green supply chain management practices on firms’ performance: an empirical study from the perspective of Pakistan Environ Sci Pollut Res 24 16829 16844

    Article  Google Scholar 

  • Kök AG Shang K Yücel S 2016 Impact of electricity pricing policies on renewable energy investments and carbon emissions Manage Sci 64 1 131 148

    Article  Google Scholar 

  • Kumar A Jain V Kumar S 2014 A comprehensive environment friendly approach for supplier selection Omega 42 1 109 123

    Article  Google Scholar 

  • Li W Chen J 2018 Backward integration strategy in a retailer Stackelberg supply chain Omega 75 118 130

    Article  CAS  Google Scholar 

  • Liang L Futou L 2020 Differential game modelling of joint carbon reduction strategy and contract coordination based on low-carbon reference of consumers J Cleaner Prod 277 123798

    Article  Google Scholar 

  • Liu Z Anderson TD Cruz JM 2012 Consumer environmental awareness and competition in two-stage supply chains Eur J Oper Res 218 3 602 613

    Article  Google Scholar 

  • Liu H Kou XF Xu GY Qiu X Liu H 2021 Which emission reduction mode is the best under the carbon cap-and-trade mechanism J Cleaner Prod 314 128053

    Article  Google Scholar 

  • Liu L Zhang ZS Wang Z 2021 Two-sided matching and game on investing in carbon emission reduction technology under a cap-and-trade system Journal of Cleaner Production 282 124436

    Article  Google Scholar 

  • Liu ML Li ZH Anwar S Zhang Y 2021c Supply chain carbon emission reductions and coordination when consumers have a strong preference for low-carbon products Environ Sci Pollut Res 28 19969 19983

    Article  CAS  Google Scholar 

  • Liu Z Lang L Hu B Shi L Huang B Zhao Y 2021 Emission reduction decision of agricultural supply chain considering carbon tax and investment cooperation Journal of Cleaner Production 294 126305

    Article  Google Scholar 

  • Meng QF Li MW  Liu WY Li Z Zhang J2021 Pricing policies of dual-channel green supply chain: Considering government subsidies and consumers’ dual preferences Sustainable Production and Consumption 26 1021 1030

    Article  Google Scholar 

  • Motoshita M Sakagami M Kudoh Y Tahara K Inaba A 2015 Potential impacts of information disclosure designed to motivate Japanese consumers to reduce carbon dioxide emissions on choice of shopping method for daily foods and drinks J Clean Prod 101 205 214

    Article  Google Scholar 

  • Nouira I Hammami R Frein Y Temponi C 2016 Design of forward supply chins: Impact of a carbon emissions-sensitive demand Int J Prod Econ 173 80 98

    Article  Google Scholar 

  • Pan KW Lai KK Liang L Leung SCH 2009 Two-period pricing and ordering policy for the dominant retailer in a two-echelon supply chain with demand uncertainty Omega 37 4 919 929

    Article  Google Scholar 

  • Pan YC Hussain J Liang XY Ma JH 2021 A duopoly game model for pricing and green technology selection under cap-and-trade scheme Computers & Industrial Engineering 153 107030

    Article  Google Scholar 

  • Qin JJ, Fu HP, Wang ZP, Xia LJ (2021) Financing and carbon emission reduction strategies of capital-constrained manufacturers in E-commerce supply chains. International Journal of Production Economics 241

  • Seuring S Muller M 2008 From a literature review to a conceptual framework for sustainable supply chain management J Clean Prod 16 15 1699 1710

    Article  Google Scholar 

  • Song H X Gao X 2018 Green supply chain game model and analysis under revenue-sharing contract J Clean Prod 170 183 192

    Article  Google Scholar 

  • Sun L Cao X Alharthi M Zhang J Taghizadeh-Hesary F Mohsin M 2020 Carbon emission transfer strategies in supply chain with lag time of emission reduction technologies and low-carbon preference of consumers Journal of Cleaner Production 264 121664

    Article  CAS  Google Scholar 

  • Wang L Hui MM 2020 Research on joint emission reduction in supply chain based on carbon footprint of the product Journal of Cleaner Production 263 121086

    Article  CAS  Google Scholar 

  • Wang J Lau AHL Lau HS 2013 Dollar vs percentage markup pricing schemes under a dominant retailer European Journal of Operational Research 227 3 471 482

    Article  Google Scholar 

  • Wang QP Zhao DZ He LF 2016 Contracting emission reduction for supply chains considering market low-carbon preference J Clean Prod 120 72 84

    Article  Google Scholar 

  • Wang C Wang W Huang R 2017 Supply chain enterprise operations and government carbon tax decisions considering carbon emissions J Clean Prod 152 271 280

    Article  Google Scholar 

  • Wang WB Zhou CY Li XY 2019 Carbon reduction in a supply chain via dynamic carbon emission quotas Journal of Cleaner Production 240 118244

    Article  Google Scholar 

  • Wang ZR Brownlee AEI Wu QH 2020 Production and joint emission reduction decisions based on two-way cost sharing contract under cap-and-trade regulation Computers & Industrial Engineering 146 106549

    Article  Google Scholar 

  • Wang YL Xu X Zhu QH 2021 Carbon emission reduction decisions of supply chain members under cap-and-trade regulations: a differential game analysis Computers & Industrial Engineering 162 107711

    Article  Google Scholar 

  • Wang YY Yu ZQ Jin MZ Mao JF 2021b Decisions and coordination of retailer-led low-carbon supply chain under altruistic preference Eur J Oper Res 293 3 910 925

    Article  Google Scholar 

  • Xu JT Chen YY Bai QG 2016 A two-echelon sustainable supply chain coordination under cap-and-trade regulation J Clean Prod 135 42 56

    Article  Google Scholar 

  • Xu XP Zhang W He P Xu XY 2017 Production and pricing problems in make-to-order supply chain with cap-and-trade regulation Omega 66 248 257

    Article  Google Scholar 

  • Yang L Zhang Q Ji JN 2017 Pricing and carbon emission reduction decisions in supply chains with vertical and horizontal cooperation Int J Prod Econ 191 286 297

    Article  Google Scholar 

  • Yang W Pan YC Ma JH Yang TY Ke X 2020 Effects of allowance allocation rules on green technology investment and product pricing under the cap-and-trade mechanism Energy Policy 139 111333

    Article  Google Scholar 

  • Yang XK Chen Q Xu ZY Zheng QQ Zhao RR Yang H Ruan CH Han F Chen QH 2021 Consumers’ preferences for health-related and low-carbon attributes of rice: a choice experiment Journal of Cleaner Production 295 126443

    Article  Google Scholar 

  • Yu YG Zhou SJ Shi Y 2020 Information sharing or not across the supply chain: the role of carbon emission reduction Transportation Research Part E 137 101915

    Article  Google Scholar 

  • Zhang LH Wang JG You JX 2015 Consumer environmental awareness and channel coordination with two substitutable products Eur J Oper Res 241 1 63 73

    Article  Google Scholar 

  • Zhang SY Wang CX Yu C Ren YJ 2019 Governmental cap regulation and manufacturer’s low carbon strategy in a supply chain with different power structures Comput Ind Eng 134 27 36

    Article  Google Scholar 

  • Zhang H Li P Zheng H Zhang Y 2020 Impact of carbon tax on enterprise operation and production strategy for low-carbon products in a co-opetition supply chain Journal of Cleaner Production 287 125058

    Article  Google Scholar 

  • Zhang LH Yao J Xu Lang 2020 Emission reduction and market encroachment: whether the manufacturer opens a direct channel or not? Journal of Cleaner Production 269 121932

    Article  Google Scholar 

  • Zhou YJ Bao MJ Chen XH Xu XH 2016 Co-op advertising and emission reduction cost sharing contracts and coordination in low-carbon supply chain based on fairness concerns J Clean Prod 133 402 413

    Article  CAS  Google Scholar 

Download references

Funding

This work is partially supported by the Guangdong Philosophy and Social Science Foundation (No. GD19YGL02) and the Guangdong Basic and Applied Basic Research Foundation (No.2020A1515110626; 2021A1515012580).

Author information

Authors and Affiliations

Authors

Contributions

Jingna Ji developed the model, calculated the main results, and explained the main conclusions. Jiansheng Huang verified the effectiveness of the model and improved the writing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jingna Ji.

Ethics declarations

Ethics approval and consent to participate.

Not applicable.

Consent for publication.

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Roula Inglesi-Lotz

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 1

In order to obtain the Stackelberg equilibrium, the best response of the follower and in the second stage should be determined at first. The leader’s decision problem is solved based on the follower’s response. Thus, we firstly solve the retailer’s response. With \(\frac{{\partial^{2} \pi_{r}^{SMS} }}{{\partial \left( p \right)^{2} }} = - 2\beta < 0\), we can know that the retailer’s profit is concave in the retail price. Thus, let \(\frac{{\partial \pi_{r}^{SMS} }}{\partial p} = 0\), we can get the best response of the retailer on the manufacturer’s emission reduction rate and wholesale price: \(p^{SMS} = \frac{1 + \eta \tau + \beta w}{{2\beta }}\). Substituting the price into the manufacturer’s profit function, we can get \(\frac{{\partial^{2} \pi_{m}^{SMS} }}{{\partial \left( w \right)^{2} }} = - \beta < 0\), \(\frac{{\partial^{2} \pi_{m}^{SMS} }}{\partial w\partial \tau } = \frac{{\partial^{2} \pi_{m}^{SMS} }}{\partial \tau \partial w} = \frac{1}{2}\left( {\eta - \beta p_{e} e} \right)\), and \(\frac{{\partial^{2} \pi_{m}^{SMS} }}{{\partial \left( \tau \right)^{2} }} = \eta p_{e} e - k_{m}\). Thus, the Hessian of \(\pi_{m}^{SMS}\) is \(H\left( {\pi_{m}^{SMS} } \right) = \left[ \begin{gathered} - \beta \quad \quad \;{{\quad \quad \quad \;\left( {\eta - \beta p_{e} e} \right)} \mathord{\left/ {\vphantom {{\quad \quad \quad \;\left( {\eta - \beta p_{e} e} \right)} 2}} \right. \kern-\nulldelimiterspace} 2} \hfill \\ {{\left( {\eta - \beta p_{e} e} \right)} \mathord{\left/ {\vphantom {{\left( {\eta - \beta p_{e} e} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}\quad \quad \;\eta p_{e} e - k_{m} \hfill \\ \end{gathered} \right]\). In this model, \(k_{m}\) is significant large. Thus, \(H_{11} < 0\) and \(\det \left( H \right) = \left( {k_{m} - \eta p_{e} e} \right)\beta - \frac{{\left( {\eta - \beta p_{e} e} \right)^{2} }}{4} > 0\). Hence, \(\pi_{m}^{SMS}\) is concave in \(w\) and \(\tau\). Let \(\frac{{\partial \pi_{m}^{SMS} }}{\partial w} = 0\) and \(\frac{{\partial \pi_{m}^{SMS} }}{\partial \tau } = 0\), we can get \(\tau^{SMS*} { = }\frac{{\left( {\eta + \beta p_{e} e} \right)\left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]}}{{4\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} }}\), \(w^{SMS*} { = }\frac{{2k_{m} \left[ {1 + \beta c + \beta p_{e} \left( {e - \alpha } \right)} \right] - \left( {\eta + \beta p_{e} e} \right)\left[ {\eta p_{e} \left( {e - \alpha } \right) + p_{e} e + \eta c} \right]}}{{4\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} }}\), and \(p^{SMS*} { = }\frac{{k_{m} \left[ {3 + \beta c + \beta p_{e} \left( {e - \alpha } \right)} \right] - \left( {\eta + \beta p_{e} e} \right)\left[ {\eta p_{e} \left( {e - \alpha } \right) + p_{e} e + \eta c} \right]}}{{4\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} }}\).

Proof of Proposition 1

\(\frac{{\partial \tau^{SMS*} }}{\partial \eta }{ = }\frac{{\left[ {4\beta k_{m} + \left( {\eta + \beta p_{e} e} \right)^{2} } \right]\left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]}}{{\left[ {4\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{2} }} > 0\),

\(\frac{{\partial w^{SMS*} }}{\partial \eta }{ = }\frac{{\left[ {4\eta k_{m} - p_{e} e\left( {\eta + \beta p_{e} e} \right)^{2} } \right]\left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]}}{{\left[ {4\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{2} }} > 0\),

\(\frac{{\partial p^{SMS*} }}{\partial \eta }{ = }\frac{{\left[ {2k_{m} \left( {3\eta + \beta p_{e} e} \right) - p_{e} e\left( {\eta + \beta p_{e} e} \right)^{2} } \right]\left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]}}{{\left[ {4\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{2} }} > 0\).

Therefore, \(\frac{{\partial p^{SMS*} }}{\partial \eta } > \frac{{\partial w^{SMS*} }}{\partial \eta }\). In addition, with \(\pi_{m}^{SMS*} { = }\frac{{k_{m} \left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]^{2} }}{{2\left[ {4\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]}}\) and \(\pi_{r}^{SMS*} { = }\frac{{\beta k_{m}^{2} \left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]^{2} }}{{\left[ {4\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{2} }}\), we can know that both \(\pi_{m}^{SMS*}\) and \(\pi_{r}^{SMS*}\) increase as \(\eta\) increases.

Proof of Proposition 2

(1) \(\frac{{\partial \tau^{SMS*} }}{{\partial k_{m} }}{ = } - \frac{{4\beta \left( {\eta + \beta p_{e} e} \right)\left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]}}{{\left[ {4\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{2} }} < 0\);

\(\frac{{\partial \pi_{m}^{SMS*} }}{{\partial k_{m} }}{ = } - \frac{1}{2}\left[ {\frac{{\left( {\eta + \beta p_{e} e} \right)\left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]}}{{4\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} }}} \right]^{2} < 0\);

\(\frac{{\partial \pi_{r}^{SMS*} }}{{\partial k_{m} }}{ = } - 2k_{m} \beta \frac{{\left( {\eta + \beta p_{e} e} \right)^{2} \left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]^{2} }}{{\left[ {4\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{3} }} < 0\).

Thus, \(\tau^{SMS*}\), \(\pi_{m}^{SMS*}\), and \(\pi_{r}^{SMS*}\) increase as \(k_{m}\) decreases.

(2) \(\frac{{\partial w^{SMS*} }}{{\partial k_{m} }}{ = } - \frac{{2\left[ {\eta^{2} - \left( {\beta p_{e} e} \right)^{2} } \right]\left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]}}{{\left[ {4\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{2} }}\),

\(\frac{{\partial p^{SMS*} }}{{\partial k_{m} }}{ = } - \frac{{\left( {3\eta - \beta p_{e} e} \right)\left( {\eta + \beta p_{e} e} \right)\left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]}}{{\left[ {4\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{2} }}\).

Thus, when \(0 \le \eta \le {{\beta p_{e} e} \mathord{\left/ {\vphantom {{\beta p_{e} e} 3}} \right. \kern-\nulldelimiterspace} 3}\), then \({{\partial w^{SMS*} } \mathord{\left/ {\vphantom {{\partial w^{SMS*} } {\partial k_{m} }}} \right. \kern-\nulldelimiterspace} {\partial k_{m} }} \ge 0\) and \({{\partial p^{SMS*} } \mathord{\left/ {\vphantom {{\partial p^{SMS*} } {\partial k_{m} }}} \right. \kern-\nulldelimiterspace} {\partial k_{m} }} \ge 0\); when \({{\beta p_{e} e} \mathord{\left/ {\vphantom {{\beta p_{e} e} 3}} \right. \kern-\nulldelimiterspace} 3} < \eta \le \beta p_{e} e\), then \({{\partial w^{SMS*} } \mathord{\left/ {\vphantom {{\partial w^{SMS*} } {\partial k_{m} }}} \right. \kern-\nulldelimiterspace} {\partial k_{m} }} \ge 0\) and \({{\partial p^{SMS*} } \mathord{\left/ {\vphantom {{\partial p^{SMS*} } {\partial k_{m} }}} \right. \kern-\nulldelimiterspace} {\partial k_{m} }} < 0\); when \(\beta p_{e} e < \eta \le 1\), then \({{\partial w^{SMS*} } \mathord{\left/ {\vphantom {{\partial w^{SMS*} } {\partial k_{m} }}} \right. \kern-\nulldelimiterspace} {\partial k_{m} }} < 0\) and \({{\partial p^{SMS*} } \mathord{\left/ {\vphantom {{\partial p^{SMS*} } {\partial k_{m} }}} \right. \kern-\nulldelimiterspace} {\partial k_{m} }} < 0\).

Proof of Lemma 2

According to the reverse solution method, we first solve the manufacturer’s wholesale price and emission reduction rate decision. By substituting \(p = w + \Delta p\) into Eq. (2), we can get \(\frac{{\partial^{2} \pi_{m}^{SRS} }}{{\partial \left( w \right)^{2} }} = - 2\beta < 0\), \(\frac{{\partial^{2} \pi_{m}^{SRS} }}{\partial w\partial \tau } = \frac{{\partial^{2} \pi_{m}^{SRS} }}{\partial \tau \partial w} = \eta - \beta p_{e} e\), \(\frac{{\partial^{2} \pi_{m}^{SRS} }}{{\partial \left( \tau \right)^{2} }} = 2\eta p_{e} e - k_{m}\). The Hessian of \(\pi_{m}^{SRS}\) is \(H\left( {\pi_{m}^{SRS} } \right) = \left[ \begin{gathered} - 2\beta \quad \quad \;\quad \quad \eta - \beta p_{e} e \hfill \\ \eta - \beta p_{e} e\quad \quad \;2\eta p_{e} e - k_{m} \hfill \\ \end{gathered} \right]\). In the model, \(k_{m}\) is significantly large, and thus \(H_{11} < 0\) and \(\det \left( H \right) = 2\beta \left( {k_{m} - 2\eta p_{e} e} \right) - \left( {\eta - \beta p_{e} e} \right)^{2} > 0\). Hence, \(\pi_{m}^{SRS}\) is concave in \(w\) and \(\tau\). Let \(\frac{{\partial \pi_{m}^{SRS} }}{\partial w} = 0\) and \(\frac{{\partial \pi_{m}^{SRS} }}{\partial \tau } = 0\), we can get \(w^{SRS} { = }\frac{{k_{m} \left[ {1 + \beta c - \beta \Delta p + \beta p_{e} \left( {e - \alpha } \right)} \right] - \left( {\eta + \beta p_{e} e} \right)\left[ {\eta p_{e} \left( {e - \alpha } \right) + p_{e} e\left( {1 - \beta \Delta p} \right) + \eta c} \right]}}{{2\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} }}\) and \(\tau^{SRS} { = }\frac{{\left( {\eta + \beta p_{e} e} \right)\left[ {1 - \beta c - \beta \Delta p - \beta p_{e} \left( {e - \alpha } \right)} \right]}}{{2\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} }}\).

Next, we solve the retailer’s optimal decision problem. Substituting \(w^{SRS}\) and \(\tau^{SRS}\) into the profit function of the retailer, we can get \(\frac{{\partial^{2} \pi_{r}^{SRS} }}{{\partial \left( {\Delta p} \right)^{2} }} = - \frac{{2\beta^{2} k_{m} }}{{2\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} }} < 0\). Hence, \(\pi_{r}^{SRS}\) is concave in \(\Delta p\). Let \(\frac{{\partial \pi_{r}^{SRS} }}{\partial \Delta p} = 0\), we can get \(\Delta p = \frac{{1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)}}{2\beta }\). By substituting \(\Delta p\) into \(w^{SRS}\) and \(\tau^{SRS}\), we can get the optimal decisions of the manufacturer.

Proof of Proposition 4

(1) \(\frac{{\partial \tau^{SRS*} }}{{\partial k_{m} }}{ = } - \frac{{\beta \left( {\eta + \beta p_{e} e} \right)\left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]}}{{\left[ {2\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{2} }} < 0\); \(\frac{{\partial \pi_{m}^{SRS*} }}{{\partial k_{m} }}{ = } - \frac{1}{8}\left[ {\frac{{\left( {\eta + \beta p_{e} e} \right)\left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]}}{{2\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} }}} \right]^{2} < 0\);

\(\frac{{\partial \pi_{r}^{SRS*} }}{{\partial k_{m} }}{ = } - \frac{{\left( {\eta + \beta p_{e} e} \right)^{2} \left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]^{2} }}{{4\left[ {2\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{2} }} < 0\).

(2) \(\frac{{\partial w^{SRS*} }}{{\partial k_{m} }}{ = } - \frac{{\left[ {\eta^{2} - \left( {\beta p_{e} e} \right)^{2} } \right]\left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]}}{{2\left[ {2\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{2} }}\),

\(\frac{{\partial p^{SRS*} }}{{\partial k_{m} }}{ = } - \frac{{\left( {\eta - \beta p_{e} e} \right)\left( {\eta + \beta p_{e} e} \right)\left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]}}{{2\left[ {2\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{2} }}\).

Thus, we can conclude that when \(\eta > \beta p_{e} e\), \({{\partial w^{SRS*} } \mathord{\left/ {\vphantom {{\partial w^{SRS*} } {\partial k_{m} }}} \right. \kern-\nulldelimiterspace} {\partial k_{m} }} < 0\), \({{\partial p^{SRS*} } \mathord{\left/ {\vphantom {{\partial p^{SRS*} } {\partial k_{m} }}} \right. \kern-\nulldelimiterspace} {\partial k_{m} }} < 0\); when \(\eta \le \beta p_{e} e\), \({{\partial w^{SRS*} } \mathord{\left/ {\vphantom {{\partial w^{SRS*} } {\partial k_{m} }}} \right. \kern-\nulldelimiterspace} {\partial k_{m} }} \ge 0\), \({{\partial p^{SRS*} } \mathord{\left/ {\vphantom {{\partial p^{SRS*} } {\partial k_{m} }}} \right. \kern-\nulldelimiterspace} {\partial k_{m} }} \ge 0\).

Proof of Lemma 3

We first solve the retailer’s decisions, including pricing and low-carbon promotion level. With \(\frac{{\partial^{2} \pi_{r}^{SMC} }}{{\partial \left( p \right)^{2} }} = - 2\beta < 0\), \(\frac{{\partial^{2} \pi_{r}^{SMC} }}{\partial p\partial s} = \frac{{\partial^{2} \pi_{r}^{SMC} }}{\partial s\partial p} = \gamma\), and \(\frac{{\partial^{2} \pi_{r}^{SMC} }}{{\partial \left( s \right)^{2} }} = - k_{r}\), we can get the Hessian of \(\pi_{r}^{SMC}\) which is \(H\left( {\pi_{r}^{SMC} } \right) = \left[ \begin{gathered} - 2\beta \quad \quad \;\gamma \hfill \\ \gamma \quad \quad \;\quad - k_{r} \hfill \\ \end{gathered} \right]\). In this model, \(k_{r}\) is significantly large, and thus \(H_{11} < 0\) and \(\det \left( H \right) = 2\beta k_{r} - \gamma^{2} > 0\). It can be concluded that the retailer’s profit function is a joint concave function of retail price and low-carbon promotion level. Thus, let \(\frac{{\partial \pi_{r}^{SMC} }}{\partial p} = 0\) and \(\frac{{\partial \pi_{r}^{SMC} }}{\partial s} = 0\), we can get \(s^{SMC} = \frac{{\gamma \left( {1 + \eta \tau - \beta w} \right)}}{{2\beta k_{r} - \gamma^{2} }}\) and \(p^{SMC} = \frac{{k_{r} \left( {1 + \eta \tau + \beta w} \right) - \gamma^{2} w}}{{2\beta k_{r} - \gamma^{2} }}\). Substituting them into the manufacturer’s profit function, we can get \(\frac{{\partial^{2} \pi_{m}^{SMC} }}{{\partial \left( w \right)^{2} }} = - \frac{{2\beta^{2} k_{r} }}{{2\beta k_{r} - \gamma^{2} }} < 0\), \(\frac{{\partial^{2} \pi_{m}^{SMC} }}{\partial w\partial \tau } = \frac{{\partial^{2} \pi_{m}^{SMC} }}{\partial \tau \partial w} = \frac{{\beta k_{r} \left( {\eta - \beta p_{e} e} \right)}}{{2\beta k_{r} - \gamma^{2} }}\), and \(\frac{{\partial^{2} \pi_{m}^{SMC} }}{{\partial \left( \tau \right)^{2} }} = \frac{{2\beta k_{r} \eta p_{e} e - 2\beta k_{m} k_{r} + \gamma^{2} k_{m} }}{{2\beta k_{r} - \gamma^{2} }}\). Thus, we can get the Hessian of \(\pi_{m}^{SMC}\): \(H\left( {\pi_{m}^{SMC} } \right) = \left[ \begin{gathered} - \frac{{2\beta^{2} k_{r} }}{{2\beta k_{r} - \gamma^{2} }}\quad \quad \;\quad \quad \quad \quad \quad \;\;\frac{{\beta k_{r} \left( {\eta - \beta p_{e} e} \right)}}{{2\beta k_{r} - \gamma^{2} }} \hfill \\ \frac{{\beta k_{r} \left( {\eta - \beta p_{e} e} \right)}}{{2\beta k_{r} - \gamma^{2} }}\quad \quad \;\frac{{2\beta k_{r} \eta p_{e} e - 2\beta k_{m} k_{r} + \gamma^{2} k_{m} }}{{2\beta k_{r} - \gamma^{2} }} \hfill \\ \end{gathered} \right]\). Suppose that \(2k_{m} \left( {2\beta k_{r} - \gamma^{2} } \right) - k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} > 0\), then \(H_{11} < 0\) and \(\det \left( H \right) = \frac{{\beta^{2} k_{r} \left[ {2k_{m} \left( {2\beta k_{r} - \gamma^{2} } \right) - k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]}}{{\left( {2\beta k_{r} - \gamma^{2} } \right)^{2} }} > 0\). Thus, \(\pi_{m}^{SMS}\) is jointly concave in \(w\) and \(\tau\). Let \(\frac{{\partial \pi_{m}^{SMC} }}{\partial w} = 0\) and \(\frac{{\partial \pi_{m}^{SMC} }}{\partial \tau } = 0\), we can gain the optimal decision of the manufacturer and the retailer in Lemma 3.

Proof of Proposition 5

\(\frac{{\partial \tau^{SMC*} }}{\partial \eta }{ = }\frac{{k_{r} \left[ {2k_{m} \left( {2\beta k_{r} - \gamma^{2} } \right) + k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]\left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]}}{{\left[ {2k_{m} \left( {2\beta k_{r} - \gamma^{2} } \right) - k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{2} }} > 0\),

\(\frac{{\partial w^{SMC*} }}{\partial \eta }{ = }\frac{{k_{r} \left[ {2\eta k_{m} \left( {2\beta k_{r} - \gamma^{2} } \right) - p_{e} e\beta k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]\left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]}}{{\left[ {2k_{m} \left( {2\beta k_{r} - \gamma^{2} } \right) - k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{2} }} > 0\),

\(\frac{{\partial p^{SMC*} }}{\partial \eta }{ = }\frac{{k_{r} \left[ {2\beta k_{m} k_{r} \left( {3\eta + \beta p_{e} e} \right) - 2k_{m} \eta \gamma^{2} - p_{e} e\beta k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]\left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]}}{{\left[ {2k_{m} \left( {2\beta k_{r} - \gamma^{2} } \right) - k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{2} }} > 0\).

Thus, \(\frac{{\partial p^{SMC*} }}{\partial \eta } > \frac{{\partial w^{SMC*} }}{\partial \eta }\). In addition, with Lemma 1 and Eq. (5), we can conclude that \(s^{SMC*}\), \(\pi_{m}^{SMC*}\), and \(\pi_{r}^{SMC*}\) increase with the increase of \(\eta\).

Proof of Lemma 4

We first solve the manufacturer’s wholesale price and emission reduction rate. With \(\frac{{\partial^{2} \pi_{m}^{SRC} }}{{\partial \left( w \right)^{2} }} = - 2\beta < 0\), \(\frac{{\partial^{2} \pi_{m}^{SRC} }}{\partial w\partial \tau } = \frac{{\partial^{2} \pi_{m}^{SRC} }}{\partial \tau \partial w} = \eta - \beta p_{e} e\), and \(\frac{{\partial^{2} \pi_{m}^{SRC} }}{{\partial \left( \tau \right)^{2} }} = 2\eta p_{e} e - k_{m}\), we can get the Hessian of \(\pi_{m}^{SRC}\): \(H\left( {\pi_{m}^{SRC} } \right) = \left[ \begin{gathered} - 2\beta \quad \quad \;\quad \quad \eta - \beta p_{e} e \hfill \\ \eta - \beta p_{e} e\quad \quad \;2\eta p_{e} e - k_{m} \hfill \\ \end{gathered} \right]\). In this model, \(k_{m}\) is significantly large, and thus \(H_{11} < 0\) and \(\det \left( H \right) = 2\beta \left( {k_{m} - 2\eta p_{e} e} \right) - \left( {\eta - \beta p_{e} e} \right)^{2} > 0\). Hence, \(\pi_{m}^{SRC}\) is concave in \(w\) and \(\tau\). Let \(\frac{{\partial \pi_{m}^{SRC} }}{\partial w} = 0\) and \(\frac{{\partial \pi_{m}^{SRC} }}{\partial \tau } = 0\), we can get \(w^{SRC} { = }\frac{\begin{gathered} k_{m} \left[ {1 + \beta c - \beta \Delta p + \beta p_{e} \left( {e - \alpha } \right) + \gamma s} \right] \hfill \\ - \left( {\eta + \beta p_{e} e} \right)\left[ {\eta p_{e} \left( {e - \alpha } \right) + p_{e} e\left( {1 - \beta \Delta p + \gamma s} \right) + \eta c} \right] \hfill \\ \end{gathered} }{{2\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} }}\) and \(\tau^{SRC} { = }\frac{{\left( {\eta + \beta p_{e} e} \right)\left[ {1 - \beta c - \beta \Delta p - \beta p_{e} \left( {e - \alpha } \right){ + }\gamma s} \right]}}{{2\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} }}\).

Next, we solve the retailer’s optimal decision problem. By substituting \(w^{SRC}\) and \(\tau^{SRC}\) into the profit function of the retailer, we can get \(\frac{{\partial^{2} \pi_{r}^{SRC} }}{{\partial \left( {\Delta p} \right)^{2} }} = - \frac{{2\beta^{2} k_{m} }}{{2\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} }} < 0\), \(\frac{{\partial^{2} \pi_{r}^{SMC} }}{\partial p\partial s} = \frac{{\partial^{2} \pi_{r}^{SMC} }}{\partial s\partial p} = \frac{{\beta \gamma k_{m} }}{{2\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} }}\), and \(\frac{{\partial^{2} \pi_{r}^{SRC} }}{{\partial \left( s \right)^{2} }} = - k_{r}\). We can get the Hessian of \(\pi_{r}^{SRC}\): \(H\left( {\pi_{r}^{SRC} } \right) = \left[ \begin{gathered} - \frac{{2\beta^{2} k_{m} }}{{2\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} }}\quad \quad \;\;\frac{{\beta \gamma k_{m} }}{{2\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} }} \hfill \\ \frac{{\beta \gamma k_{m} }}{{2\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} }}\quad \quad \quad \quad \;\quad \quad - k_{r} \hfill \\ \end{gathered} \right]\). Suppose that \(k_{m} \left( {4\beta k_{r} - \gamma^{2} } \right) - 2k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} > 0\), we can get \(H_{11} < 0\) and \(\det \left( H \right) = \frac{{\beta^{2} k_{m} \left[ {k_{m} \left( {4\beta k_{r} - \gamma^{2} } \right) - 2k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]}}{{\left[ {2\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{2} }} > 0\). Thus, \(\pi_{r}^{SRC}\) is concave in \(p\) and \(s\). Let \(\frac{{\partial \pi_{r}^{SRC} }}{\partial p} = 0\) and \(\frac{{\partial \pi_{r}^{SRC} }}{\partial s} = 0\), we can get the optimal decisions of the manufacturer.

Proof of Proposition 7

(1) \(\frac{{\partial \tau^{SRC*} }}{{\partial k_{m} }}{ = } - \frac{{k_{r} \left( {4\beta k_{r} - \gamma^{2} } \right)\left( {\eta + \beta p_{e} e} \right)\left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]}}{{\left[ {k_{m} \left( {4\beta k_{r} - \gamma^{2} } \right) - 2k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{2} }} < 0\);

\(\frac{{\partial s^{SRC*} }}{{\partial k_{m} }}{ = } - \frac{{2\gamma k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} \left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]}}{{\left[ {k_{m} \left( {4\beta k_{r} - \gamma^{2} } \right) - 2k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{2} }} < 0\);

\(\frac{{\partial \pi_{m}^{SRC*} }}{{\partial k_{m} }}{ = } - \frac{1}{2}\frac{{\left\{ {k_{r} \left( {\eta + \beta p_{e} e} \right)\left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]} \right\}^{2} \left[ \begin{gathered} k_{m} \left( {4\beta k_{r} + \gamma^{2} } \right) - \hfill \\ 2k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} \hfill \\ \end{gathered} \right]}}{{\left[ {k_{m} \left( {4\beta k_{r} - \gamma^{2} } \right) - 2k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{3} }} < 0\);

\(\frac{{\partial \pi_{r}^{SRC*} }}{{\partial k_{m} }}{ = } - \frac{{k_{r}^{2} \left( {\eta + \beta p_{e} e} \right)^{2} \left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]^{2} }}{{\left[ {k_{m} \left( {4\beta k_{r} - \gamma^{2} } \right) - 2k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{2} }} < 0\).

(2) \(\frac{{\partial w^{SRC*} }}{{\partial k_{m} }}{ = } - \frac{{k_{r} \left( {\eta + \beta p_{e} e} \right)\left[ {2k_{r} \left( {\eta - \beta p_{e} e} \right) + p_{e} e\gamma^{2} } \right]\left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]}}{{\left[ {k_{m} \left( {4\beta k_{r} - \gamma^{2} } \right) - 2k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{2} }}\),

\(\frac{{\partial p^{SRC*} }}{{\partial k_{m} }}{ = } - \frac{{k_{r} \left( {\eta + \beta p_{e} e} \right)\left[ {2\beta k_{r} \left( {\eta - \beta p_{e} e} \right) + \gamma^{2} \left( {\eta + 2\beta p_{e} e} \right)} \right]\left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]}}{{\beta \left[ {k_{m} \left( {4\beta k_{r} - \gamma^{2} } \right) - 2k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{2} }}\).

Thus, we can conclude that when \(\eta > \beta p_{e} e\), then \({{\partial w^{SRC*} } \mathord{\left/ {\vphantom {{\partial w^{SRC*} } {\partial k_{m} }}} \right. \kern-\nulldelimiterspace} {\partial k_{m} }} < 0\), \({{\partial p^{SRC*} } \mathord{\left/ {\vphantom {{\partial p^{SRC*} } {\partial k_{m} }}} \right. \kern-\nulldelimiterspace} {\partial k_{m} }} < 0\); when \(\eta \le \beta p_{e} e\), then \({{\partial w^{SRC*} } \mathord{\left/ {\vphantom {{\partial w^{SRC*} } {\partial k_{m} }}} \right. \kern-\nulldelimiterspace} {\partial k_{m} }} \ge 0\), \({{\partial p^{SRC*} } \mathord{\left/ {\vphantom {{\partial p^{SRC*} } {\partial k_{m} }}} \right. \kern-\nulldelimiterspace} {\partial k_{m} }} \ge 0\).

Proof of Theorem 1

(1) With Lemma 1 and Lemma 3, we can get.

\(\tau^{SMS*} - \tau^{SMC*} { = } - \frac{{2k_{m} \gamma^{2} \left( {\eta + \beta p_{e} e} \right)\left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]}}{{\left[ {4\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]\left[ {2k_{m} \left( {2\beta k_{r} - \gamma^{2} } \right) - k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]}} \le 0\).

(2) \(w^{SMS*} - w^{SMC*} { = } - \frac{{k_{m} \gamma^{2} \left( {\eta - \beta p_{e} e} \right)\left( {\eta + \beta p_{e} e} \right)\left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]}}{{\beta \left[ {4\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]\left[ {2k_{m} \left( {2\beta k_{r} - \gamma^{2} } \right) - k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]}}\).

Thus, when \(\eta > \beta p_{e} e\), then \(w^{SMS*} < w^{SMC*}\); when \(\eta \le \beta p_{e} e\), then \(w^{SMS*} \ge w^{SMC*}\).

(3) \(p^{SMS*} - p^{SMC*} { = } - \frac{{k_{m} \gamma^{2} \left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]\left[ {2\beta k_{m} + \left( {\eta - \beta p_{e} e} \right)\left( {\eta + \beta p_{e} e} \right)} \right]}}{{\beta \left[ {4\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]\left[ {2k_{m} \left( {2\beta k_{r} - \gamma^{2} } \right) - k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]}} \le 0\). Thus, \(p^{SMS*} \le p^{SMC*}\).

Proof of Theorem 2

By comparing the profits of the manufacturer and the retailer in the two models, we can get the following conclusions:

\(\pi_{m}^{SMS*} - \pi_{m}^{SMC*} { = } - \frac{{\left\{ {k_{m} \gamma \left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]} \right\}^{2} }}{{\left[ {4\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]\left[ {2k_{m} \left( {2\beta k_{r} - \gamma^{2} } \right) - k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]}} \le 0\);

\(\pi_{r}^{SMS*} - \pi_{r}^{SMC*} { = } - \frac{{\left\{ {k_{m} \gamma \left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]} \right\}^{2} \left[ {8\beta k_{m}^{2} \left( {2\beta k_{r} - \gamma^{2} } \right) - k_{r} \left( {\eta + \beta p_{e} e} \right)^{4} } \right]}}{{2\left[ {4\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{2} \left[ {2k_{m} \left( {2\beta k_{r} - \gamma^{2} } \right) - k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{2} }} \le 0\).

Thus, \(\pi_{m}^{SMS*} \le \pi_{m}^{SMC*}\), \(\pi_{r}^{SMS*} \le \pi_{r}^{SMC*}\), \(\pi_{{}}^{SMS*} \le \pi_{{}}^{SMC*}\).

Proof of Theorem 3

\(\tau^{SRS*} - \tau^{SRC*} { = } - \frac{{k_{m} \gamma^{2} \left( {\eta + \beta p_{e} e} \right)\left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]}}{{2\left[ {2\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]\left[ {k_{m} \left( {4\beta k_{r} - \gamma^{2} } \right) - 2k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]}} \le 0\).

\(w^{SRS*} - w^{SRC*} { = } - \frac{{k_{m} \gamma^{2} \left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]\left[ {k_{m} - p_{e} e\left( {\eta + \beta p_{e} e} \right)} \right]}}{{2\left[ {2\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]\left[ {k_{m} \left( {4\beta k_{r} - \gamma^{2} } \right) - 2k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]}} \le 0\).

\(p^{SRS*} - p^{SRC*} { = } - \frac{{k_{m} \gamma^{2} \left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]\left[ {3\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)\left( {\eta + 2\beta p_{e} e} \right)} \right]}}{{2\beta \left[ {2\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]\left[ {k_{m} \left( {4\beta k_{r} - \gamma^{2} } \right) - 2k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]}} \le 0\).

Thus, we can get \(\tau^{SRS*} \le \tau^{SRC*}\); \(w^{SRS*} \le w^{SRC*}\); \(p^{SRS*} \le p^{SRC*}\).

Proof of Theorem 4

\(\pi_{m}^{SRS*} - \pi_{m}^{SRC*} { = } - \frac{{\left\{ {k_{m} \gamma \left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]} \right\}^{2} \left[ {k_{m} \left( {8\beta k_{r} - \gamma^{2} } \right) - 4k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]}}{{8\left[ {2\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]\left[ {k_{m} \left( {4\beta k_{r} - \gamma^{2} } \right) - 2k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{2} }} \le 0\);

\(\pi_{r}^{SRS*} - \pi_{r}^{SRC*} { = } - \frac{{\left\{ {k_{m} \gamma \left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]} \right\}^{2} }}{{4\left[ {2\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]\left[ {k_{m} \left( {4\beta k_{r} - \gamma^{2} } \right) - 2k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{2} }} \le 0\).

Thus, we can get \(\pi_{m}^{SRS*} \le \pi_{m}^{SRC*}\), \(\pi_{r}^{SRS*} \le \pi_{r}^{SRC*}\), \(\pi_{{}}^{SRS*} \le \pi_{{}}^{SRC*}\).

Proof of Theorem 5

(1) \(\tau^{SMS*} - \tau^{SRS*} { = } - \frac{{\left( {\eta + \beta p_{e} e} \right)^{3} \left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]}}{{2\left[ {4\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]\left[ {2\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]}} < 0\).

(2) \(\pi_{m}^{SMS*} - \pi_{m}^{SRS*} { = }\frac{{k_{m} \left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]^{2} \left[ {4\beta k_{m} - 3\left( {\eta + \beta p_{e} e} \right)^{2} } \right]}}{{8\left[ {4\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]\left[ {2\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]}}\).

Thus, when \(4\beta k_{m} - 3\left( {\eta + \beta p_{e} e} \right)^{2} \ge 0\), then \(\pi_{m}^{SMS*} - \pi_{m}^{SRS*} \ge 0\); when \(4\beta k_{m} - 3\left( {\eta + \beta p_{e} e} \right)^{2} < 0\), then \(\pi_{m}^{SMS*} - \pi_{m}^{SRS*} < 0\). With \(2\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} > 0\), we can conclude that when \(\frac{{\left( {\eta + \beta p_{e} e} \right)^{2} }}{2\beta } < k_{m} < \frac{{3\left( {\eta + \beta p_{e} e} \right)^{2} }}{4\beta }\), then \(\pi_{m}^{SMS*} < \pi_{m}^{SRS*}\); when \(k_{m} \ge \frac{{3\left( {\eta + \beta p_{e} e} \right)^{2} }}{4\beta }\), then \(\pi_{m}^{SMS*} \ge \pi_{m}^{SRS*}\).

(3) \(\pi_{r}^{SMS*} - \pi_{r}^{SRS*} { = } - \frac{{k_{m} \left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]^{2} \left\{ {4\beta k_{m} \left[ {2\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right] + \left( {\eta + \beta p_{e} e} \right)^{4} } \right\}}}{{4\left[ {4\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{2} \left[ {2\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]}} < 0\).

(4) \(\pi_{{}}^{SMS*} - \pi_{{}}^{SRS*} { = } - \frac{{k_{m} \left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]^{2} \left( {\eta + \beta p_{e} e} \right)^{2} \left[ {8\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]}}{{8\left[ {4\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{2} \left[ {2\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]}} < 0\).

Proof of Theorem 6

(1) \(s^{SMC*} - s^{SRC*} { = }\frac{{\gamma k_{m} \left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]\left[ {k_{m} \gamma^{2} - k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]}}{{\left[ {2k_{m} \left( {2\beta k_{r} - \gamma^{2} } \right) - k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]\left[ {k_{m} \left( {4\beta k_{r} - \gamma^{2} } \right) - 2k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]}}\),

\(\tau^{SMC*} - \tau^{SRC*} { = }\frac{{k_{r} \left( {\eta + \beta p_{e} e} \right)\left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]\left[ {k_{m} \gamma^{2} - k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]}}{{\left[ {2k_{m} \left( {2\beta k_{r} - \gamma^{2} } \right) - k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]\left[ {k_{m} \left( {4\beta k_{r} - \gamma^{2} } \right) - 2k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]}}\).

Thus, we can conclude that when \(k_{m} \gamma^{2} - k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} > 0\), then \(s^{SMC*} > s^{SRC*}\), \(\tau^{SMC*} > \tau^{SRC*}\); when \(k_{m} \gamma^{2} - k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} \le 0\), then \(s^{SMC*} \le s^{SRC*}\), \(\tau^{SMC*} \le \tau^{SRC*}\).

(2) \(\pi_{m}^{SMC*} - \pi_{m}^{SRC*} { = }\frac{{k_{m} k_{r} \left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]^{2} \left\{ \begin{gathered} \left[ {k_{m} \left( {2\beta k_{r} - \gamma^{2} } \right) - k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{2} + \hfill \\ 2k_{r}^{2} \left[ {\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right]\left[ {2\beta k_{m} - \left( {\eta + \beta p_{e} e} \right)^{2} } \right] \hfill \\ \end{gathered} \right\}}}{{2\left[ {2k_{m} \left( {2\beta k_{r} - \gamma^{2} } \right) - k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]\left[ {k_{m} \left( {4\beta k_{r} - \gamma^{2} } \right) - 2k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{2} }}\),

\(\pi_{r}^{SMC*} - \pi_{r}^{SRC*} { = } - \frac{{k_{m} k_{r} \left[ {1 - \beta c - \beta p_{e} \left( {e - \alpha } \right)} \right]^{2} \left\{ {\left[ {k_{m} \left( {2\beta k_{r} - \gamma^{2} } \right) - k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{2} + 2k_{m}^{2} \left( {\beta k_{r} - \gamma^{2} } \right)\left( {2\beta k_{r} - \gamma^{2} } \right)} \right\}}}{{2\left[ {2k_{m} \left( {2\beta k_{r} - \gamma^{2} } \right) - k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]^{2} \left[ {k_{m} \left( {4\beta k_{r} - \gamma^{2} } \right) - 2k_{r} \left( {\eta + \beta p_{e} e} \right)^{2} } \right]}}\).

Thus, we can get \(\pi_{m}^{SMC*} - \pi_{m}^{SRC*} > 0\) and \(\pi_{r}^{SMC*} - \pi_{r}^{SRC*} < 0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, J., Huang, J. Research on single/cooperative emission reduction strategy under different power structures. Environ Sci Pollut Res 29, 55213–55234 (2022). https://doi.org/10.1007/s11356-022-19603-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-19603-2

Keywords

Navigation