Skip to main content
Log in

Effect of using limestone fines on the chemical shrinkage of pastes and mortars

  • Environmental Sustainability and Remediation
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The main aim of this study is to examine the effect of incorporating limestone fine (LF) on chemical shrinkage of pastes and mortars. For this purpose, five paste and five mortar mixes were prepared with 0, 5, 10, 15, and 20% (by weight) LF as a replacement of cement. The water-to-binder (w/b) ratio was 0.45 for all mixes. The sand-to-binder (s/b) ratio in the mortar mixes was 2. Testing included chemical shrinkage, compressive strength, density, and ultrasonic pulse velocity (UPV). Chemical shrinkage was tested each hour for the first 24 h, and thereafter each 2 days until a total period of 90 days. Furthermore, compressive strength and UPV tests were conducted at 1 day, 7, 28, and 90 days of curing. The results show that the long-term chemical shrinkage of pastes was found to increase with the increase in LF content up to 15%. Beyond this level of replacement, the chemical shrinkage started to decrease. However, the chemical shrinkage for mortars increased with the increase in LF content up to 10% LF and a decrease was observed beyond this level. It was also noticed that compressive strength for pastes and mortars attained the highest value for mixes containing 10 and 15% LF. The trend in the UPV results is somewhat similar to those of strength. Density for pastes and mortars increased up to 15% LF followed by a decrease at 20% replacement level. Correlations between the various properties were conducted. It was found that an increase in chemical shrinkage led to an increase in compressive strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

Download references

Acknowledgements

The authors gratefully acknowledge the support received from the staff and technicians working at BAU Laboratories.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, J.K.; methodology, R.R.; formal analysis, R.R.; writing-original draft preparation, R.R. and H.G.; writing-review and editing, J.K., H.G., and A.E.; supervision, J.K. and A.E.; project administration, H.G. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jamal Khatib.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatib, J., Ramadan, R., Ghanem, H. et al. Effect of using limestone fines on the chemical shrinkage of pastes and mortars. Environ Sci Pollut Res 30, 25287–25298 (2023). https://doi.org/10.1007/s11356-022-18496-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-18496-5

Keywords

Navigation