Skip to main content

Advertisement

Log in

Potential habitats of an alien species (Asterias rubens Linnaeus, 1758) in the Black Sea: its current and future distribution patterns

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The Atlantic common starfish, Asterias rubens, has arrived firstly at the Marmara Sea in 1996 and to the Black Sea in 2007. In this study, we have exhibited the possible potential distribution of Asterias rubens throughout the Black Sea. For this, we predicted and determined the present and future distributions, and habitat preferences of this starfish in the Black Sea using environmental variables. The ecological niche modeling was used to detect the suitable habitat of A. rubens. In the current model, shallow areas seem to be the suitable habitat for A. rubens. However, this trend may change in the future distribution pattern. For the future projection, two representative concentration pathways (RCPs) that are a greenhouse gas concentration was used: RCP2.6 that is likely to keep global temperature rise below 2 °C by 2100 and RCP8.5 that will happen approximately 5 °C in range of global mean temperature increase in 2100 from pre-industrial baseline. According to RCP2.6 scenarios as well as the RCP8.5 scenario in 2040–2050, the suitable habitats in the Black Sea will probably decrease due to climate change. The most suitable habitats in these scenarios will remain the western and southern coasts of the Black Sea because these areas will be less affected by the change in the climate. In contrast, for the 2090–2100 periods of the RCP8.5, there will likely be a significant unsuitable habitat throughout the Black Sea. Therefore, the suitable habitat for A. rubens will be restricted to the western and southern coasts of the Black Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  • Aguera A, Trommelen M, Burrows F, Jansen JM, Schellekens T, Smaal A (2012) Winter feeding activity of the common starfish (Asterias rubens L.): the role of temperature and shading. J Sea Res 72:106–112

    Article  Google Scholar 

  • Ağırbaş E, Çakıroğlu A M (2021) Güney Karadeniz Kıyıları Deniz Suyu Yüzey Sıcaklığının Uzun Dönemli Değişimi (in Turkhis). In: Salihoğlu B, Öztürk B (ed) Climate change and its effects on Turkish Seas. Türk Deniz Araştırmaları Vakfı (TÜDAV) Yayın no: 60, İstanbul, Turkey, 266s

  • Ağırbaş E, Feyzioğlu AM, Kopuz Ü (2014) Seasonal changes of phytoplankton chlorophyll a, primary production and their relation in the continental shelf area of the South Eastern Black Sea. Turkish J Fish Aquat Sci 14:713–726

    Google Scholar 

  • Albayrak S (1996) Echinoderm Fauna of the Bosphorus (Türkiye). Oebalia 22

  • Albayrak S, Balkis S, Balkis N (2004) Bivalvia (Mollusca fauna of the Sea of Marmara. J Adv Zool 25:1–11

    Google Scholar 

  • Allen PL (1983) Feeding-Behavior of Asterias rubens (L) on Soft bottom bivalves: a study in selective predation. J Exp Mar Biol Ecol 70:79–90

    Article  CAS  Google Scholar 

  • Anger K, Rogal U, Schriever G, Valentin C (1977) In-situ investigations on the echinoderm Asterias rubens as a predator of soft-bottom communities in the Western Baltic Sea. Helgoland Wıss Meer 29:439–459

    Article  Google Scholar 

  • Anwar N, Churcher L (2015) Ballast water management. Witherby Seamanship International Ltd., Edinburgh

    Google Scholar 

  • Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrao EA, De Clerck O (2018) Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob Ecol Biogeogr 27:277–284

    Article  Google Scholar 

  • Barker MF, Nichols D (1983) Reproduction, recruitment and juvenile ecology of the starfish Asterias rubens and Marthasterias glacialis. J Mar Biolog Assoc UK 63:745–765

    Article  Google Scholar 

  • Bat L, Şahin F, Satılmış HH, Üstün F, Özdemir ZB, Kıdeys AE, Shulman GE (2007) The changed ecosystem of the Black Sea and its impact on anchovy fisheries. J Fish Sci 1:191–227

    Google Scholar 

  • Bax N, Williamson A, Aguero M, Gonzalez E, Geeves W (2003) Marine invasive alien species: a threat to global biodiversity. Mar Policy 27:313–323

    Article  Google Scholar 

  • Benitez-Villalobos F, Tyler PA, Young CM (2006) Temperature and pressure tolerance of embryos and larvae of the Atlantic seastars Asterias rubens and Marthasterias glacialis (Echinodermata: Asteroidea): potential for deep-sea invasion. Mar Ecol Prog Ser 314:109–117

    Article  Google Scholar 

  • Brown JL, Bennett JR, French CM (2017) SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Peerj 5:e4095

    Article  Google Scholar 

  • Burrows MT, Schoeman DS, Richardson AJ, Molinos JG, Hoffman A, Buckley LB, Moore PJ, Brown CJ, Bruno JF, Duarte CM, Halpern BS, Hoegh-Guldberg O, Kappel CV, Kiessling W, O’Connor MI, Pandolfi JM, Parmesan C, Sydeman WJ, Ferrier S, Williams KJ, Poloczanska ES (2014) Geographical limits to species-range shifts are suggested by climate velocity. Nature 507:492–495

    Article  CAS  Google Scholar 

  • Byrne M, Gall M, Wolfe K, Agüera A (2016) From pole to pole: the potential for the Arctic seastar Asterias amurensis to invade a warming Southern Ocean. Glob Change Biol 22:3874–3887

    Article  Google Scholar 

  • Carlos LA, Barbosa NPU, Moulton TP, Creed JC (2015) Ecological niche model used to examine the distribution of an invasive, non-indigenous coral. Mar Environ Res 103:115–124

    Article  Google Scholar 

  • Chamberlain S, Ram K, Hardt T (2020) Spocc: interface to species occurrence data sources. https://github.com/ropensci/spocc

  • Charlebois PM, Corkum LD, Jude DJ, Knight C (2001) The round goby (Neogobius melanostomus) invasion: current research and future needs. J Great Lakes Res 27:263–266

    Article  Google Scholar 

  • Dalgıç G, Ceylan Y, Şahin C (2009) The Atlantic starfish, Asterias rubens Linnaeus, 1758 (Echinodermata: Asteroidea: Asteriidae) spreads in the Black Sea. Aquat Invasions 4:485–486

    Article  Google Scholar 

  • Di Giglio S, Lein E, Hu MY, Stumpp M, Melzner F, Malet L, Pernet P, Dubois P (2020) Skeletal integrity of a marine keystone predator (Asterias rubens) threatened by ocean acidification. J Exp Mar Biol Ecol 526:151335

    Article  Google Scholar 

  • Elith J, Leathwick JR (2009) Species Distribution models: ecological explanation and prediction across space and time. Ann Rev Ecol Evol Syst 40:677–697

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE, Yates CJ (2011) A statistical explanation of Maxent for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • Fish JD, Fish S (1996) A student’s guide to the seashore. Cambridge University Press, 564 p

  • Fourcade Y, Besnard AG, Secondi J (2018) Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Glob Ecol Biogeogr 27:245–256

    Article  Google Scholar 

  • GBIF: The Global Biodiversity Information Facility 2020 What is GBIF?. Available from https://www.gbif.org/occurrence/search?taxon_key = 7765831 [16 January 2020].

  • Goldsmit J, Archambault P, Chust G, Villarino E, Liu G, Lukovich JV, Barber DG, Howland KL (2018) Projecting present and future habitat suitability of ship-mediated aquatic invasive species in the Canadian Arctic. Biol Invasions 20:501–517

    Article  Google Scholar 

  • Guillaumot C, Artois J, Saucède T, Demoustier L, Moreau C, Eléaume M, Agüera A, Danis B (2019) Broad-scale species distribution models applied to data-poor areas. Prog Oceanogr 175:198–207

    Article  Google Scholar 

  • Güneroğlu A, Samsun O, Feyzioğlu M, Dihkan M (2019) The Black Sea-The Past, Present, and Future Status. Coasts Estuar 363–375

  • Harris RMB, Grose MR, Lee G, Bindoff NL, Porfirio LL, Fox-Hughes P (2014) Climate projections for ecologists. Wiley Interdiscip Rev Clim Change 5:621–637

    Article  Google Scholar 

  • Karhan SÜ, Kalkan E, Yokeş B (2007) First record of the Atlantic starfish, Asterias rubens (Echinodermata: Asteroidea) from the Black Sea. Mar Biodivers Rec 1:e63

    Article  Google Scholar 

  • Kass JM, Vilela B, Aiello-Lammens ME, Muscarella R, Merow C, Anderson RP (2018) WALLACE: A flexible platform for reproducible modeling of species niches and distributions built for community expansion. Methods Ecol Evol 9:1151–1156

    Article  Google Scholar 

  • Lawrence JM (ed) (2013) Starfish: biology and ecology of the Asteroidea. The Johns Hopkins University Press, Baltimore, p 267

    Google Scholar 

  • Ling SD, Johnson CR, Mundy CN, Morris A, Ross DJ (2012) Hotspots of exotic free-spawning sex: man-made environment facilitates success of an invasive seastar. J Appl Ecol 49:733–741

    Article  Google Scholar 

  • Mah CL (2020) World Asteroidea Database. Asterias rubens Linnaeus, 1758. Accessed through: World Register of Marine Species

  • Medvedev I (2018) Tides in the Black Sea: observations and numerical modelling. Pure Appl Geophys 175(6):1951–1969

    Article  Google Scholar 

  • Moraitis ML, Valavanis VD, Karakassis I (2019) Modelling the effects of climate change on the distribution of benthic indicator species in the Eastern Mediterranean Sea. Sci Total Environ 667:16–24

    Article  CAS  Google Scholar 

  • Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, Anderson RP (2014) ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol Evol 5:1198–1205

    Article  Google Scholar 

  • Newell RIE (2004) Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. J Shellfish Res 23:51–61

    Google Scholar 

  • Oaie G, Secrieru D, Shimus K (2005) Black Sea Basin: sediment types and distribution, sedimentation processes. Proceedings of the Euro-EcoGeoCentre-Romania Geoecomarina 9/10, pp 21–31

  • Pearse V, Pearse MJ, Buchsbaum R (1987) Living Invertebrates. Blackwell Scientific Publications, Boston

    Google Scholar 

  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martinez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions, monographs in population biology. Princeton University Press, Princeton

    Book  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259

    Article  Google Scholar 

  • Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Phillips SJ, Dudik M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197

    Article  Google Scholar 

  • R Core Team (2020) R: A Language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL. http://www.Rproject.org/

  • Radosavljevic A, Anderson RP (2014) Making better Maxent models of species distributions: complexity, overfitting and evaluation. J Biogeogr 41:629–643

    Article  Google Scholar 

  • Sağlam NE, Kesici UY, Akdoğan P (2011) Some invasive species in the Black Sea and their effects on the Black Sea ecosystem. Eğirdir Su Ürünleri Fakültesi Dergisi 7:25–38

    Google Scholar 

  • Saier B (2001) Direct and indirect effects of sea stars Asterias rubens on mussel beds (Mytilus edulis) in the Wadden Sea. J Sea Res 46:29–42

    Article  Google Scholar 

  • Schmittmann L (2017) Local adaptation of the common sea star Asterias rubens to different salinities. Master Thesis, Kiel University, Germany

  • Shefer S, Abelson A, Mokady O, Geffen E (2004) Red to Mediterranean Sea bioinvasion: natural drift through the Suez Canal, or anthropogenic transport? Mol Ecol 13:2333–2343

    Article  CAS  Google Scholar 

  • Srivastava V, Lafond V, Griess VC (2019) Species distribution models (SDM): applications, benefits and challenges in invasive species management. CAB Rev 14:1–13

    Article  Google Scholar 

  • Stachowicz JJ, Terwin JR, Whitlatch RB, Osman RW (2002) Linking climate change and biological invasions: ocean warming facilitates nonindigenous species invasions. PNAS 99:15497–15500

    Article  CAS  Google Scholar 

  • Strayer DL (2010) Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshw Biol 55:152–174

    Article  Google Scholar 

  • Thresher RE, Kuris AM (2004) Options for managing invasive marine species. Biol Invasions 6:295–300

    Article  Google Scholar 

  • Tyberghein L, Verbruggen H, Pauly K, Troupin C, Mineur F, De Clerck O (2012) Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob Ecol Biogeogr 21:272–281

    Article  Google Scholar 

  • Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21:335–342

    Article  Google Scholar 

  • Williams SL, Grosholz ED (2008) The invasive species challenge in estuarine and coastal environments: marrying management and science. Estuar Coasts 31:3–20

    Article  Google Scholar 

  • Wilson KL, Skinner MA, Lotze HK (2019) Projected 21st-century distribution of canopy-forming seaweeds in the Northwest Atlantic with climate change. Divers Distrib 25:582–602

    Article  Google Scholar 

  • Witman JD, Genovese SJ, Bruno JF, McLaughlin JW, Pavlin BI (2003) Massive prey recruitment and the control of rocky subtidal communities on large spatial scales. Ecol Monogr 73:441–462

    Article  Google Scholar 

  • Yakolev YM (1998) The temperature tolerance of adult sea- stars (Asterias amurensis) in the laboratory. In: Mooi, R., Telford, M. (Eds) Echinoderms: San Francisco: proceedings of the Ninth International Echinoderm Conference, San Francisco, California, USA, 5–9 August, 1996. 319

  • Yüce Ö, Sadler KC (2000) Boğaz ve Marmara’da bulunan iki baskın denizyıldızı türünün üreme periodlarının saptanması In: Hamarat, S., Evrin, V. (Eds.) Proceedings of SBT 2000- 4th National Meeting of Underwater Science and Technology, İstanbul, Turkey

  • Zaitsev Y, Mamaev V (1997) Marine biological diversity in the Black Sea. A study of change and decline. United Nations Publications, New York

  • Zavialov I, Osadchiev A, Sedakov R, Barnier B, Molines JM, Belokopytov V (2020) Water exchange between the Sea of Azov and the Black Sea through the Kerch Strait. Ocean Sci 16:15–30

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Tolga Akdemir for the occurrence data of A. rubens from the Marmara Sea.

Author information

Authors and Affiliations

Authors

Contributions

YC and SG conceived and designed research. SG analyzed data. YC and SG wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Serkan Gül.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: V.V.S.S. Sarma

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 54 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceylan, Y., Gül, S. Potential habitats of an alien species (Asterias rubens Linnaeus, 1758) in the Black Sea: its current and future distribution patterns. Environ Sci Pollut Res 29, 19563–19571 (2022). https://doi.org/10.1007/s11356-021-17171-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-17171-5

Keywords

Navigation