Skip to main content
Log in

Recent advances in physiological and molecular mechanisms of heavy metal accumulation in plants

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Among abiotic stress, the toxicity of metals impacts negatively on plants’ growth and productivity. This toxicity promotes various perturbations in plants at different levels. To withstand stress, plants involve efficient mechanisms through the implication of various signaling pathways. These pathways enhance the expression of many target genes among them gene coding for metal transporters. Various metal transporters which are localized at the plasma membrane and/or at the tonoplast are crucial in metal stress response. Furthermore, metal detoxification is provided by metal-binding proteins like phytochelatins and metallothioneins. The understanding of the molecular basis of metal toxicities signaling pathways and tolerance mechanisms is crucial for genetic engineering to produce transgenic plants that enhance phytoremediation. This review presents an overview of the recent advances in our understanding of metal stress response. Firstly, we described the effect of metal stress on plants. Then, we highlight the mechanisms involved in metal detoxification and the importance of the regulation in the response to heavy metal stress. Finally, we mentioned the importance of genetic engineering for enhancing the phytoremediation technique. In the end, the response to heavy metal stress is complex and implicates various components. Thus, further studies are needed to better understand the mechanisms involved in response to this abiotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The data supporting this review are from previously reported studies, which have been cited in this manuscript.

Abbreviations

ABA:

Abscisic acid

ACC:

1-Aminocyclopropane-1-carboxylic acid

ACO:

ACC oxidase

ACS:

ACC synthases

AMF:

Arbuscular mycorrhizal fungi

CaMs:

Calmodulins

CBLs:

Calcineurin B-like proteins

CDF:

Cation diffusion facilitator transporter

CDPKs:

Ca2+-dependent protein kinases

CIPK:

CBL-interacting proteins kinases

CTR1:

Constitutive triple response 1

DRE:

Dehydration-responsive elements

DREB:

Drought-responsive elements binding

ERF:

Ethylene-responsive factors

ET:

Ethylene

ETR1:

Ethylene resistant 1

GST:

Glutathione S-transferase

HSPs:

Heat shock proteins

HMAs:

Heavy metal transport ATPases

JA:

Jasmonate

MAPK:

Mitogen-activated protein kinase

MTP:

Metal tolerance protein

MTs:

Metallothioneins

Nramp:

Natural resistance-associated macrophage protein

PCs:

Phytochelatins

PGPR:

Beneficial plant growth-promoting bacteria

QTL:

Quantitative trait loci

ROS:

Reactive oxygen species

SAM:

S-Adenosyl-methionine

References

  • Abdelkrim S, Jebara SH, Saadani O et al (2020) In situ effects of Lathyrus sativus- PGPR to remediate and restore quality and fertility of Pb and Cd polluted soils. Ecotoxicol Environ Saf 192:110260

    CAS  Google Scholar 

  • Adamowski M, Friml J (2015) PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 27:20–32

    CAS  Google Scholar 

  • Ahsan N, Renaut J, Komatsu S (2009) Recent developments in the application of proteomics to the analysis of plant responses to heavy metal. Proteomics 9:2602–2621

    CAS  Google Scholar 

  • Aina R, Sgorbati S, Santagostino A, Labra M, Ghiani A, Citterio S (2004) Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiol Plant 121:472–480

    CAS  Google Scholar 

  • Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chemi 2019:14

    Google Scholar 

  • Ali S, Abbas Z, Seleiman MF et al (2020) Glycine betaine accumulation, significance and interests for heavy metal tolerance in plants. Plants 9:896

    CAS  Google Scholar 

  • Alotaibi MO, Mohammed AE, Almutairi T, Elobeid MM (2019) Morpho-physiological and proteomic analyses of Eucalyptus camaldulensis as a bioremediator in copper-polluted soil in Saudi Arabia. Plants 8:43

    CAS  Google Scholar 

  • Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20:171–182

    CAS  Google Scholar 

  • Arif N, Yadav V, Singh S, Singh S, Ahmad P, Mishra RK, Sharma S, Tripathi DK, Dubey NK, Chauhan DK (2016) Influence of high and low levels of plant-beneficial heavy metal ions on plant growth and development. Front Environ Sci 4:69

    Google Scholar 

  • Arif N, Sharma NC, Yadav V et al (2019) Understanding heavy metal stress in a rice crop: toxicity, tolerance mechanisms, and amelioration strategies. J Plant Biol 62:239–253

    CAS  Google Scholar 

  • Asai S, Ohta K, Yoshioka H (2008) MAPK signaling regulates nitric oxide and NADPH oxidase dependent oxidative bursts in Nicotiana benthamiana. Plant Cell 20:1390–1406

    CAS  Google Scholar 

  • Asgher M, Khan NA, Khan MIR, Fatma M, Masood A (2014) Ethylene production is associated with alleviation of cadmium-induced oxidative stress by sulfur in mustard types differing in ethylene sensitivity. Ecotoxicol Environ Saf 106:54–61

    CAS  Google Scholar 

  • Aung MS, Masuda H, Nozoye T, Kobayashi T, Jeon JS, An G, Nishizawa NK (2019) Nicotianamine synthesis by OsNAS3 is important for mitigating iron excess stress in rice. Front Plant Sci 10:660

    Google Scholar 

  • Axelsen KB, Palmgren MG (2001) Inventory of the superfamily of P-type ion pumps inArabidopsis. Plant Physiol 126:696–706

    CAS  Google Scholar 

  • Azzarello E, Pandolfi C, Giordano C et al (2012) Ultramorphological and physiological modifications induced by high zinc levels in Paulownia tomentosa. Environ Exp Bot 81:11–173

    CAS  Google Scholar 

  • Baliardini C, Meyer CL, Salis P, Saumitou-Laprade P, Verbruggen N (2015) CATION EXCHANGER1 cosegregates with cadmium tolerance in the metal hyperaccumulator Arabidopsis halleri and plays a role in limiting oxidative stress in Arabidopsis spp. Plant Physiol 169:549–559

    Google Scholar 

  • Ban Q, Liu G, Wang Y (2011) A DREB gene from Limonium bicolor mediates molecular and physiological responses to copper stress in transgenic tobacco. J Plant Physiol 168:449–458

    CAS  Google Scholar 

  • Benatti RM, Yookongkaew N, Meetam M et al (2014) Metallothionein deficiency impacts copper accumulation and redistribution in leaves and seeds of Arabidopsis. New Phyto 202:940–951

    CAS  Google Scholar 

  • Bernard C, Roosens N, Czernic P, Lebrun M, Verbruggen N (2004) A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens. FEBS Lett 569:140–148

    CAS  Google Scholar 

  • Bethke G, Unthan T, Uhrig JF, Pöschl Y, Gust AA, Scheel D, Lee J (2009) Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. Proc Natl Acad Sci U S A 106:8067–8072

    CAS  Google Scholar 

  • Bhuiyan MSU, Min SR, Jeong WJ, Sultana S, Choi KS, Lee Y, Liu JR (2011) Overexpression of AtATM3 in Brassica juncea confers enhanced heavy metal tolerance and accumulation. Plant Cell Tissue Organ Cult 107:69–77

    CAS  Google Scholar 

  • Briffa J, Sinagra E, Blundell R (2020) heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6:e04691

    Google Scholar 

  • Brunetti P, Zanella L, De Paolis A et al (2015) Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis. J Exp Bot 66:3815–3829

    CAS  Google Scholar 

  • Cailliatte R, Lapeyre B, Briat J-F, Mari S, Curie C (2009) The NRAMP6 metal transporter contributes to cadmium toxicity. Biochem J 422:217–228

    CAS  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    CAS  Google Scholar 

  • Cao S, Chen Z, Liu G, Jiang L, Yuan H, Ren G, Bian X, Jian H, Ma X (2009) The Arabidopsis ethylene-insensitive 2 gene is required for lead resistance. Plant Physiol Biochem 47:308–312

    CAS  Google Scholar 

  • Cao F, Dai H, Hao PF, Wu F (2020) Silicon regulates the expression of vacuolar H+-pyrophosphatase 1 and decreases cadmium accumulation in rice (Oryza sativa L.). Chemosphere 240:124907

    CAS  Google Scholar 

  • Capdevila M, Atrian S (2011) Metallothionein protein evolution: a mini-assay. J Biol Inorg Chem 16:977–989

    CAS  Google Scholar 

  • Carini F, Bengtsson G (2001) Postdeposition transport of radionuclides in fruit. J Environ Radioact 52:215–236

    CAS  Google Scholar 

  • Ceasar SA, Lekeux G, Motte P et al (2020) di-Cysteine residues of the Arabidopsis thaliana HMA4 C-terminus are only partially required for cadmium transport. Front Plant Sci 11:560

    Google Scholar 

  • Charfeddine M, Charfeddine S, Bouaziz D, Messaoud RB, Bouzid RG (2017) The effect of cadmium on transgenic potato (Solanum tuberosum) plants overexpressing the StDREB transcription factors. Plant Cell Tissue Organ Cult 128:521–541

    CAS  Google Scholar 

  • Chaturvedi AK, Patel MK, Mishra A, Tiwari V, Jha B (2014) The SbMT-2 gene from a halophyte confers abiotic stress tolerance and modulates ROS scavenging in transgenic tobacco. PLoS ONE 9(10):e111379

    Google Scholar 

  • Chen YA, Chi WC, Huang TL, Lin CY et al (2012) Mercury-induced biochemical and proteomic changes in rice roots. Plant Physiol Biochem 55:23–32

    CAS  Google Scholar 

  • Chen YA, Chi WC, Trinh NN, Huang LY, Chen YC, Cheng KT et al (2014) Transcriptome profiling and physiological studies reveal a major role for aromatic amino acids in mercury stress tolerance in rice seedlings. PLoS ONE 9:e95163

    Google Scholar 

  • Chen C, Song Y, Zhuang K, Li L, Xia Y, Shen Z (2015) Proteomic analysis of copper-binding proteins in excess copper-stressed roots of two rice (Oryza sativa L.) varieties with different Cu tolerances. PLoS ONE 10(4):e0125367

    Google Scholar 

  • Cho D, Villiers F, Kroniewicz L et al (2012) Vacuolar CAX1 and CAX3 influence auxin transport in guard cells via regulation of apoplastic pH. Plant Physiol 160:1293–1302

    CAS  Google Scholar 

  • Clemens S (2006) Evolution and function of phytochelatin synthases. J Plant Physiol 163:319–332

    CAS  Google Scholar 

  • Cong W, Miao Y, Xu L et al (2019) Transgenerational memory of gene expression changes induced by heavy metal stress in rice (Oryza sativa L.). BMC Plant Biol 19:282

    Google Scholar 

  • Conn SJ, Gilliham M, Athman A et al (2011) Cell-specific vacuolar calcium storage mediated by CAX1 regulates apoplastic calcium concentration, gas exchange, and plant productivity in Arabidopsis. Plant Cell 23:240–257

    CAS  Google Scholar 

  • D’Alessandro A, Taamalli M, Gevi F, Timperio AM, Zolla L, Ghnaya T (2013) Cadmium stress responses in Brassica juncea: hints from proteomics and metabolomics. J Proteom Res 12:4979–4997

    Google Scholar 

  • Dai J, Wang N, Xiong H, Qiu W, Nakanishi H, Kobayashi T, Nishizawa NK, Zuo Y (2018) The yellow stripe-like (YSL) gene functions in internal copper transport in peanut. Genes 9:635

    Google Scholar 

  • DalCorso G, Fasasni E, Furini A (2013) Recent advances in the analysis of metal hyperaccumulation and hypertolerance in plants using proteomics. Fron Plant Sci 4:280

    CAS  Google Scholar 

  • Das N, Bhattacharya S, Maiti MK (2016) Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation. Plant Physiol Biochem 105:297–309

    CAS  Google Scholar 

  • Delhaize E, Kataoka T, Hebb DM, White RG, Ryan PR (2003) Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance. Plant Cell 15:1131–1142

    CAS  Google Scholar 

  • Ding Y, Chen Z, Zhu C (2011) Microarray-based analysis of cadmium responsive microRNAs in rice (Oryza sativa). J Exp Bot 62:3563–3573

    CAS  Google Scholar 

  • Ding H, Gao J, Qin C, Ma H et al (2014) The dynamics of DNA methylation in maize roots under Pb stress. Int J Mol Sci 15:23537–23554

    Google Scholar 

  • Dixit P, Mukherjee PK, Ramachandran V, Eapen S (2011) Glutathione transferase from Trichoderma virensenhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum. PLoS One 6(1):e16360

    CAS  Google Scholar 

  • Djemal R, Khoudi H (2021) The ethylene-responsive transcription factor of durum wheat, TdSHN1, confers cadmium, copper, and zinc tolerance to yeast and transgenic tobacco plants. Protoplasma. https://doi.org/10.1007/s00709-021-01635-z

    Article  Google Scholar 

  • Drążkiewicz M, Skórzyńska-Polit E, Krupa Z (2004) Copper induced oxidative stress and antioxidant defense in Arabidopsis thaliana. Biometals 17:379–387

    Google Scholar 

  • Elbaz B, Shoshani-Knaani N, David-Assael O et al (2006) High expression in leaves of the zinc hyperaccumulator Arabidopsis helleri of AhMHX, a homolog of an Arabidopsis thaliana vacuolar metal/proton exchanger. Plant Cell Environ 29:1179–1190

    CAS  Google Scholar 

  • Eren E, Argüello JM (2004) Arabidopsis HMA2, a divalent heavy metal-transporting P(1B)- type ATPase, is involved in cytoplasmic Zn2+ homeostasis. Plant Physiol 136:3712–3723

    CAS  Google Scholar 

  • Faè M, Balestrazzi A, Confalonieri M, Donà M, Macovei A, Valassi A, Carbonera D (2014) Copper-mediated genotoxic stress is attenuated by the overexpression of the DNA repair gene MtTdp2α (tyrosyl-DNA phosphodiesterase 2) in Medicago truncatula plants. Plant Cell Rep 33:1071–1080

    Google Scholar 

  • Fan W, Liu C, Cao B et al (2018) Genome-wide identification and characterization of four gene families putatively involved in cadmium uptake, translocation and sequestration in Mulberry. Front Plant Sci 9:879

    Google Scholar 

  • Farinati S, DalCorso G, Varotto S, Furini A (2010) The brassica juncea BjCdR15, an ortholog of Arabidopsis TGA3, is a regulator of cadmium uptake, transport and accumulation in shoots and confers cadmium tolerance in transgenic plants. New Phytol 185:964–978

    CAS  Google Scholar 

  • Feki K, Kamoun Y, Ben Mahmoud R, Farhat-Khemakhem A, Gargouri A, Brini F (2015) Multiple abiotic stress tolerance of the transformants yeast cells and the transgenic Arabidopsis plants expressing a novel durum wheat catalase. Plant Physiol Bioch 97:420–431

    CAS  Google Scholar 

  • Feng RW, Wang L, Yang JG, Zhao PP et al (2021) Underlying mechanisms responsible for restriction of uptake and translocation of heavy metals (metalloids) by selenium via root application in plants. J Hazard Mater 402:123570

    CAS  Google Scholar 

  • Fernández V, Brown PH (2013) From plant surface to plant metabolism: the uncertain fate of foliar applied nutrients. Front Plant Sci 4:289

    Google Scholar 

  • Fu S, Lu Y, Zhang X et al (2019) The ABC transporter ABCG36 is required for cadmium tolerance in rice. J Exp Bot 70:5909–5918

    CAS  Google Scholar 

  • Fusco N, Micheletto L, Dal Corso G, Borgato L, Furini A (2005) Identification of cadmium-regulated genes by cDNA-AFLP in the heavy metal accumulator Brassica juncea L. J Exp Bot 56:3017–3027

    CAS  Google Scholar 

  • Gaillard S, Jacquet H, Vavasseur A, Leonhardt N, Forestier C (2008) AtMRP6/AtABCC6, an ATP-binding cassette transporter gene expressed during early steps of seedling development and up-regulated by cadmium in Arabidopsis thaliana. BMC Plant Biol 8:22

    Google Scholar 

  • Gaitán-Solís E, Taylor NJ, Siritunga D, Stevens W, Schachtman DP (2015) Overexpression of the transporters AtZIP1 and AtMTP1 in cassava changes zinc accumulation and partitioning. Front Plant Sci 6:492

    Google Scholar 

  • Gao X, Ai WL, Gong H, Cui LJ, Chen BX, Luo HY, Qiu BS (2016) Transgenic NfFeSOD Sedum alfredii plants exhibited profound growth impairments and better relative tolerance to long-term abiotic stresses. Plant Biotechnol Rep 10:117–128

    Google Scholar 

  • Gao Y, Yang F, Liu J, Xie W, Zhang L, Chen Z, Peng Z, Ou Y, Yao Y (2020) Genome-wide identification of metal tolerance protein genes in Populus trichocarpa and their roles in response to various heavy metal stresses. Int J Mol Sci 21:1680

    CAS  Google Scholar 

  • Gendre D, Czernic P, Conejero G, Pianelli K, Briat J, Lebrun M (2006) TcYSL3, a member of the YSL Gene Family from the Hyperaccumulator Thlaspi caerulescens, encodes a nicotianamine Ni/Fe transporter. Plant J49:1–15

    Google Scholar 

  • Głowacka K, Sokolnik AZ, Okorski A, Najdzion J (2019) The effect of cadmium on the activity of stress-related enzymes and the ultrastructure of pea roots. Plants 8:413

    Google Scholar 

  • Goix S, Lévêque T, Xiong TT, Schreck E, Baeza-Squiban A, Geret F, Uzu G, Austruy A, Dumat C (2014) Environmental and health impacts of fine and ultrafine metallic particles: assessment of threat scores. Environ Res 133:185–194

    CAS  Google Scholar 

  • Gong X, Liu Y, Huang D, Zeng G, Liu S, Tang H et al (2016) Effects of exogenous calcium and spermidine on cadmium stress moderation and metal accumulation in Boehmeria nivea (L.) Gaudich. Environ Sci Pollut Res 23:8699–8708

    CAS  Google Scholar 

  • Goto F, Enomoto Y, Shoji K, Shimada H, Yoshihara T (2019) Copper treatment of peach leaves causes lesion formation similar to the biotic stress response. Plant Biotechnol 36:135–142

    CAS  Google Scholar 

  • Gouiaa S, Khoudi H (2019) Expression of V-PPase proton pump, singly or in combination with a NHX1 transporter, in transgenic tobacco improves copper tolerance and accumulation. Environ Sci Pollut Res 26:37037–37045

    CAS  Google Scholar 

  • Grauwe DL, Dugardeyn J, Straeten DVD (2008) Novel mechanisms of ethylene-gibberellin crosstalk revealed by the gai eto2-1 double mutant. Plant Signal Behav 3:1113–1115

    Google Scholar 

  • Gravot A, Lieutaud A, Verret F, Auroy P, Vavasseur A, Richaud P (2004) AtHMA3, a plant P1B-ATPase, functions as a Cd/Pb transporter in yeast. FEBS Lett 561:22–28

    CAS  Google Scholar 

  • Guan Z, Chai T, Zhang Y, Xu J, Wei W (2009) Enhancement of Cd tolerance in transgenic tobacco plants overexpressing a Cd-induced catalase cDNA. Chemosphere 76(5):623–630

    CAS  Google Scholar 

  • Guerrero MG, Escudero V, Saez A, Jimenez MT (2016) Transition metal transport in plants and associated endosymbionts: arbuscular mycorrhizal fungi and rhizobia. Front Plant Sci 7:1088

    Google Scholar 

  • Guo J, Xu W, Ma M (2012) The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana. J Hazard Mater 15:309–313

    Google Scholar 

  • Gupta SC, Sharma A, Mishra M, Mishra RK, Chowdhuri DK (2010) Heat shock proteins in toxicology: how close and how far? Life Sci 86:377–384

    CAS  Google Scholar 

  • Hamel LP, Nicole MC, Sritubtim S, Morency MJ, Ellis M, Ehlting J et al (2006) Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci 11:192–198

    CAS  Google Scholar 

  • Hanaka A, Wojcik M, Dresler S, Mroczek-Zdyrska M, Maksymiec W (2016) Does methyl jasmonate modify the oxidative stress response in Phaseolus coccineus treated with Cu? Ecotoxicol Environ Saf 124:480–488

    CAS  Google Scholar 

  • Hasan MK, Cheng Y, Kanwar MK, Chu XY, Ahammed GJ, Qi ZY (2017) Responses of plant proteins to heavy metal Stress-A Review. Front Plant Sci 8:1492

    Google Scholar 

  • Hattab S, Dridi B, Chouba L, Kheder MB, Bousetta H (2009) Photosynthesis and growth responses of pea Pisum sativum L. under heavy metals stress. J Environ Sci 21:1552–1556

    CAS  Google Scholar 

  • He J, Ren Y, Chen X, Chen H (2014) Protective roles of nitric oxide on seed germination and seedling growth of rice (Oryza sativa L.) under cadmium stress. Ecotoxicol Environ Saf 108:114–119

    CAS  Google Scholar 

  • Hermans C, Conn SJ, Chen J, Xiao Q, Verbruggen N (2013) An update on magnesium homeostasis mechanismsin plants. Metallomics 5:1170–1183

    CAS  Google Scholar 

  • Higuchi K, Watanabe S, Takahashi M, Kawasaki S, Nakanishi H, Nishizawa NK, Mori S (2001) Nicotianamine synthase gene expression differs in barley and rice under Fe-deficient conditions. Plant J 25:159–167

    CAS  Google Scholar 

  • Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–133

    CAS  Google Scholar 

  • Hossain Z, Komatsu S (2013) Contribution of proteomic studies towards understanding plant heavy metal stress response. Front Plant Sci 3:310

    Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:872875

    Google Scholar 

  • Huang TL, Huang HJ (2008) ROS and CDPK-like kinase-mediated activation of MAP kinase in rice roots exposed to lead. Chemosphere 71:1377–1385

    CAS  Google Scholar 

  • Hussain D, Haydon MJ, Wang Y et al (2004) P-Type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339

    CAS  Google Scholar 

  • Impa SM, Johnson-Beebout SE (2012) Mitigating zinc deficiency and achieving high grain Zn in rice through integration of soil chemistry and plant physiology research. Plant Soil 361:3–41

    CAS  Google Scholar 

  • Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2003) Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant J 36:366–381

    CAS  Google Scholar 

  • Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T et al (2012) Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2:286

    Google Scholar 

  • Islam E, Yang X, Li T, Liu D, Jin X, Meng F (2007) Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 147:806–816

    CAS  Google Scholar 

  • Jalmi SK, Bhagat PK, Verma D et al (2018) Traversing the link between heavy metal stress and plant signaling. Front Plant Sci 9:12

    Google Scholar 

  • Jin Sh, Xu Ch, Li G et al (2017) Functional characterization of a type 2 metallothionein gene, SsMT2, from alkaline-tolerant Suaeda salsa. Sci Rep 17914:1–12

    Google Scholar 

  • Jonak C, Nakagami H, Hirt H (2004) Heavy metal stress. activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol 136:3276–3283

    CAS  Google Scholar 

  • Kang YJ (2006) Metallothionein redox cycle and function. Exp Biol Med 231:1459–1467

    CAS  Google Scholar 

  • Kapoor D, Kavani K, Rattan A, Landi M (2021) Ameliorative role of pre-sowing proline treatment in Coriandrum sativum l. Seedlings under mercury toxicity. Phyton 90:489–501

    Google Scholar 

  • Kaur G, Singh HP, Batish DR, Kohli RK (2013) Lead (Pb) induced biochemical and ultrastructural changes in wheat (Triticum aestivum) roots. Protoplasma 1:53–62

    Google Scholar 

  • Kerkeb L, Kramer U (2003) The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiol 131:716–724

    CAS  Google Scholar 

  • Keunen E, Schellingen K, Vangronsveld J, Cuypers A (2016) Ethylene and metal stress: Small molecule, big impact. Front Plant Sci 7:23

    Google Scholar 

  • Khademi S, Khavari-Nejad RA, Saadatmand S, Najafi F (2014) The effects of exogenous salicylic acid in the antioxidant defense system in canola plants (Brassica napus L.) exposed to copper. Int J Biosci 5:64–73

    Google Scholar 

  • Khan MS, Yu X, Kikuchi A, Asahina M, Watanabe KN (2009) Genetic engineering of glycine betaine biosynthesis to enhance abiotic stress tolerance in plants. Plant Biotechnol 26:125–134

    CAS  Google Scholar 

  • Kieffer P, Dommes J, Hoffmann L, Hausman JF, Renaut J (2008) Quantitative changes in protein expression of cadmium-exposed poplar plants. Proteomics 8:2514–2530

    CAS  Google Scholar 

  • Kim S, Takahashi M, Higuchi K, Tsunoda K, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2005) Increased Nicotianamine biosynthesis confers enhanced tolerance of high levels of metals in particular nickel to plants. Plant Cell Physiol 46:1809–1818

    CAS  Google Scholar 

  • Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218

    CAS  Google Scholar 

  • Kobae Y, Uemura T, Sato MH et al (2004) Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. Plant Cell Physiol 45:1749–1758

    CAS  Google Scholar 

  • Kohli S, Handa N, Gautam V et al (2017) ROS signaling in plants under heavy metal stress. Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress, pp 185–214

  • Kollárová K, Kamenicka V, Vatehova Z, Lišková D (2018) Impact of galactoglucomannan oligosaccharides and Cd stress on maize root growth parameters, morphology, and structure. J Plant Physiol 222:59–66

    Google Scholar 

  • Korenkov V, Hirschi K, Crutchfield JD, Wagner GJ (2007) Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L. Planta 226:1379–1387

    CAS  Google Scholar 

  • Korenkov V, King B, Hirschi K, Wagner GJ (2009) Root-selective expression of AtCAX4 and AtCAX2 results in reduced lamina cadmium in field-grown Nicotiana tabacum L. Plant Biotechnol J 7:219–226

    CAS  Google Scholar 

  • Kovács V, Gondor OK, Szalai G, Darkó E, Majláth I, Janda T, Pál M (2014) Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance. J Hazard Mater 280:12–19

    Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen activated protein kinase cascade in plants. Proc Natl Acad Sci U S A 97:2940–2945

    CAS  Google Scholar 

  • Kozminska A, Wiszniewska A, Fajerska EH, Muszyńska E (2018) Recent strategies of increasing metal tolerance and phytoremediation potential using genetic transformation of plants. Plant Biotech Rep 12:1–14

    Google Scholar 

  • Kramer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272

    Google Scholar 

  • Krishna TPA, Maharajan T, Roch GV, Ignacimuthu S, Ceasar SA (2020) Structure, function, regulation and phylogenetic relationship of ZIP family transporters of plants. Front Plant Sci 11:662

    Google Scholar 

  • Krupa Z (1999) Cadmium against higher plant photosynthesis- A variety of effects and where do they possibly come from? Z Naturforsch 54:723–729

    CAS  Google Scholar 

  • Krzeslowska M, Lenartowska M, Mellerowicz E, Samardakiewicz S, Wozny A (2009) Pectinous cell wall thickenings formation – a response of moss protonemata cells to lead. Environ Exp Bot 65:119–131

    CAS  Google Scholar 

  • Kumar K, Sinha AK (2013) Overexpression of constitutively active mitogen activated protein kinase kinase 6 enhances tolerance to salt stress in rice. Rice 6:25

    Google Scholar 

  • Kumar S, Trivedi PK (2018) Glutathione S-transferases: role in combating abiotic stresses including arsenic detoxification in plants. Front Plant Sci 9:751

    Google Scholar 

  • Lanquar V, Lelièvre F, Bolte S et al (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24:4041–4051

    CAS  Google Scholar 

  • Lee JH (2013) An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnol Bioprocess Eng 18:431–439

    CAS  Google Scholar 

  • Lee S, Moon JS, Ko TS, Petros D, Goldsbrough PB, Korban S (2003) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656–663

    CAS  Google Scholar 

  • Lee SH, Ahsan N, Lee KW, Kim DH, Lee DG, Kwak SS, Lee BH (2007) Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J Plant Physiol 164:1626–1638

    CAS  Google Scholar 

  • Lee K, Bae DW, Kim SH, Han HJ, Liu X, Park HC, Lim CO, Lee SY, Chung WS (2010) Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium. J Plant Physiol 167:161–168

    CAS  Google Scholar 

  • Lekeux G, Crowet JM, Nouet C et al (2019) Homology modeling and in vivo functional characterization of the zinc permeation pathway in a heavy metal P-type ATPase. J Exp Bot 70:329–341

    CAS  Google Scholar 

  • Leszczyszyn OI, Imam HT, Blindauer CA (2013) Diversity and distribution of plant metallothioneins: a review of structure, properties and functions. Metallomics 5:1146–1169

    CAS  Google Scholar 

  • Li G, Meng X, Wang R, Mao G, Han L, Liu Y et al (2012) Dual level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLoS Genet 8:e1002767

    CAS  Google Scholar 

  • Li B, Quan-Wang C, Liu H, Li HX, Yang J, Song WP, Chen L, Zeng M (2014) Effect of Cd2+ ions on root anatomical structure of four rice genotypes. J Environ Biol 35:751–757

    CAS  Google Scholar 

  • Li P, Zhao C, Zhang Y et al (2015) Calcium alleviates cadmium-induced inhibition on root growth by maintaining auxin homeostasis in Arabidopsis seedlings. Protoplasma 253:185–200

    Google Scholar 

  • Li X, Zhang H, Ai Q, Liang G, Yu D (2016) Two bHLH transcription factors, bHLH34 and bHLH104, regulate iron homeostasis in Arabidopsis thaliana. Plant Physiol 170:2478–2493

    CAS  Google Scholar 

  • Li Z, Han X, Song X, Zhang Y, Jiang J, Han Q, Liu M, Qiao G, Zhuo R (2017) Overexpressing the Sedum alfredii Cu/Zn superoxide dismutase increased resistance to oxidative stress in transgenic Arabidopsis. Front Plant Sci 8:1010

    Google Scholar 

  • Lin YF, Liang HM, Yang SY, Boch A, Clemens S, Chen CC et al (2009) Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytol 182:392–404

    CAS  Google Scholar 

  • Lin T, Yang W, Lu W, Wang Y, Qi X (2017) Transcription factors PvERF15 and PvMTF-1 form a cadmium stress transcriptional pathway 1. Plant Physiol 173:1565–1573

    CAS  Google Scholar 

  • Liu Y, Zhang S (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16:3386–3399

    CAS  Google Scholar 

  • Liu D, Xue P, Meng Q, Zou J, Gu J, Jiang W (2009) Pb/Cu effects on the organization of microtubule cytoskeleton in interphase and mitotic cells of Allium sativum L. Plant Cell Rep 28:695–702

    CAS  Google Scholar 

  • Liu H, Zhao H, Wu L et al (2017) Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola. New Phytol 215:687–698

    CAS  Google Scholar 

  • Liu XS, Feng SJ, Zhang BQ et al (2019) OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice. BMC Plant Biol 19:283

    Google Scholar 

  • López-Millán AF, Ellis DR, Grusak MA (2004) Identification and characterization of several new members of the ZIP family of metal ion transporters in Medicago truncatula. Plant Mol Biol 54:583–596

    Google Scholar 

  • Luan S (2009) The CBL-CIPK network in plant calcium signaling. Trends Plant Sci 14:37–42

    CAS  Google Scholar 

  • Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W (2002) Calmodulins and calcineurin B–like proteins calcium sensors for specific signal response coupling in plants. Plant Cell 14:S389–S400

    CAS  Google Scholar 

  • Lv YY, Deng XP, Quan LT, Xia Y, Shen ZG (2013) Metallothioneins BcMT1 and BcMT2 from Brassica campestris enhance tolerance to cadmium and copper and decrease production of reactive oxygen species in Arabidopsis thaliana. Plant Soil 367:507–519

    CAS  Google Scholar 

  • Ma J, Sheng H, Li X, Wang L (2016) iTRAQ-based proteomic analysis reveals the mechanisms of silicon mediated. Plant Physiol Biochem 104:71–80

    CAS  Google Scholar 

  • Mari S, Gendre D, Pianelli K, Ouerdane L, Lobinski R, Briat JF, Lebrun M, Czernic P (2006) Root-to-shoot long-distance circulation of nicotianamine and nicotianamine-nickel chelates in the metal hyperaccumulator Thlaspi caerulescens. J Exp Bot 57:4111–4122

    CAS  Google Scholar 

  • Mei H, Cheng NH, Zhao J et al (2009) Root development under metal stress in Arabidopsis thaliana requires the H+/cation antiporter CAX4. New Phytol 183:95–105

    CAS  Google Scholar 

  • Mendoza SAB, Sanchez F, Hernandez G (2012) MicroRNAs as regulators in plant metal toxicity response. Front Plant Sci 3:105

    Google Scholar 

  • Mészáros P, Rybanský L, Spieß N, Socha P, Kuna R, Libantová J, Moravčíková J, Piršelová B, Hauptvogel P, Matušíková I (2014) Plant chitinase response to different metal-type stresses reveal specificity. Plant Cell Rep 33:1789–1799

    Google Scholar 

  • Meyer CL, Verbruggen N (2012) The use of the model species Arabidopsis halleri towards phytoextraction of cadmium polluted soils. New Biotechnol 30:9–14

    Google Scholar 

  • Mhamdi A, Hager J, Chaouch S et al (2010) Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiol 153:1144–1160

    CAS  Google Scholar 

  • Mills RF, Francini A, Ferreira da Rocha PSC et al (2005) The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels. FEBS Lett 579:783–791

    CAS  Google Scholar 

  • Mills RF, Valdes B, Duke M et al (2010) Functional significance of AtHMA4 C-terminal domain in planta. PLoS One 5(10):e13388

    Google Scholar 

  • Mills RF, Peaston KA, Runions J, Williams LE (2012) HvHMA2, a P1B-ATPase from barley, is highly conserved among cereals and functions in Zn and Cd transport. PLoS One 7:e42640

    CAS  Google Scholar 

  • Miyadate H, Adachi S, Hiraizumi A et al (2011) OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol 189:190–199

    CAS  Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P et al (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904

    CAS  Google Scholar 

  • Morman SA, Plumlee GS (2013) The role of airborne mineral dusts in human disease. Aeolian Res 9:203–212

    Google Scholar 

  • Mostofa MG, Hossain MA, Fujita M, Tran LSP (2015) Physiological and biochemical mechanisms associated with trehalose-induced copper-stress tolerance in rice. Sci Rep 5:11433

    CAS  Google Scholar 

  • Mu C, Zhang S, Yu G, Chen N, Li X, Liu H (2013) Overexpression of small heat shock protein LimHSP16. 45 in Arabidopsis enhances tolerance to abiotic stresses. PLoS ONE 8:e82264

    Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    CAS  Google Scholar 

  • Nevo Y, Nelson N (2006) The NRAMP family of metal-ion transporters. Biochim Biophys Acta 1763:609–620

    CAS  Google Scholar 

  • Oomen RJ, Wu J, Lelievre F et al (2009) Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens. New Phytol 181:637–650

    CAS  Google Scholar 

  • Oono Y, Yazawa T, Kawahara Y et al (2014) Genome-wide transcriptome analysis reveals that cadmium stress signaling controls the expression of genes in drought stress signal pathways in rice. PLoS ONE 9(5):e96946

    Google Scholar 

  • Oono Y, Yazawa T, Kanamori H et al (2016) Genome-wide transcriptome analysis of cadmium stress in rice. BioMed Res Int 2016:9739505

    Google Scholar 

  • Opdenakker K, Remans T, Vangronsveld J, Cuypers A (2012) Mitogen-Activated protein (MAP) kinases in plant metal stress: regulation and responses in comparison to other biotic and abiotic stresses. Int J Mol Sci 13:7828–7853

    CAS  Google Scholar 

  • Ortiz DF, Ruscitti T, McCue KF, Ow DW (1995) Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J Biol Chem 270:4721–4728

    CAS  Google Scholar 

  • Ou X, Zhang Y, Xu C, Lin X et al (2012) Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.). PLoS ONE 7(9):e41143

    CAS  Google Scholar 

  • Pan W, Shen J, Zheng Z et al (2018) Overexpression of the Tibetan Plateau annual wild barley (Hordeum spontaneum) HsCIPKs enhances rice tolerance to heavy metal toxicities and other abiotic stresses. Rice 11:51

    Google Scholar 

  • Pandey R, Muller A, Napoli CA et al (2002) Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res 30:5036–5055

    CAS  Google Scholar 

  • Park CJ, Seo YS (2015) Heat Shock Proteins: A review of the molecular chaperones for plant immunity. Plant Pathol J 31:323–333

    CAS  Google Scholar 

  • Park EJ, Jeknic Z, Pino MT, Murata N, Chen TH (2007) Glycine betaine accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress. Plant Cell Environ 30:994–1005

    CAS  Google Scholar 

  • Park J, Song WY, Ko D, Eom Y, Hansen TH, Schiller M et al (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69:278–288

    CAS  Google Scholar 

  • Pätsikkä E, Kairavuo M, Šeršen F, Aro EM, Tyystjärvi E (2002) Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. Plant Physiol 129:1359–1367

    Google Scholar 

  • Paunov M, Koleva L, Vassilev A, Vangronsveld J, Goltsev V (2018) Effects of different metals on photosynthesis: cadmium and zinc affect chlorophyll fluorescence in durum wheat. Int J Mol Sci 19:787

    Google Scholar 

  • Peng JS, Gong JM (2014) Vacuolar sequestration capacity and long-distance metal transport in plants. Front Plant Sci 5:19

    Google Scholar 

  • Persans MW, Nieman K, Salt DE (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc Natl Acad Sci U S A 98:9995–10000

    CAS  Google Scholar 

  • Pirselova B, Mistrikova V, Libantova J, Moravcikova J, Matusikova I (2012) Study on metal-triggered callose deposition in roots of maize and soybean. Biologia 67:698–705

    CAS  Google Scholar 

  • Pittman JK, Hirschi KD (2016) CAX-ing a wide net: Cation/H(+) transporters in metal remediation and abiotic stress signaling. Plant Biol 18:741–749

    CAS  Google Scholar 

  • Pochodylo AL, Aristilde L (2017) Molecular dynamics of stability and structures in phytochelatin complexes with Zn, Cu, Fe, Mg, and Ca: implications for metal detoxification. Environ Chem Lett 1–6

  • Pokholok DK, Harbison CT, Levine S et al (2005) Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122:517–527

    CAS  Google Scholar 

  • Pomponi M, Censi V, Di Girolamo V et al (2006) Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd2+ tolerance and accumulation but not translocation to the shoot. Planta 223:180–190

    CAS  Google Scholar 

  • Pourrut B, Shahid M, Douay F, Dumat C, Pinelli E (2013) Molecular mechanisms involved in lead uptake, toxicity and detoxification in higher plants, In: Heavy Metal Stress in Plants, Springer, pp 121–147

  • Rao KP, Vani G, Kumar K, Wankhede DP, Misra M, Gupta M et al (2011) Arsenic stress activates MAP kinase in rice roots and leaves. Arch Biochem Biophys 506:73–82

    CAS  Google Scholar 

  • Rentel MC, Knight MR (2004) Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol 135:1471–1479

    CAS  Google Scholar 

  • Rono JK, Le Wang L, Wu XC et al (2021) Identification of a new function of metallothionein-like gene OsMT1e for cadmium detoxification and potential phytoremediation. Chemosphere 265:129136

    CAS  Google Scholar 

  • Saher NU, Siddiqui AS (2016) Comparison of heavy metal contamination during the last decade along the coastal sediment of Pakistan: multiple pollution indices approach. Mar Pollut Bull 105:403–410

    CAS  Google Scholar 

  • Samardakiewicz S, Wozny A (2005) Cell division in Lemna minor roots treated with lead. Aquat Bot 83:289–295

    CAS  Google Scholar 

  • Samardakiewicz S, Krzesłowska M, Bilski H, Bartosiewicz R, Wozny A (2012) Is callose a barrier for lead ions entering Lemna minor L. root cells? Protoplasma 249:347–351

    CAS  Google Scholar 

  • Sandeep G, Vijayalatha KR, Anitha T (2019) Heavy metals and its impact in vegetable crops. Int J Chem Stud 7:1612–1621

    CAS  Google Scholar 

  • Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24:2155–2167

    CAS  Google Scholar 

  • Sasaki A, Yamaji N, Ma JF (2014) Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. J Exp Bot 65:6013–6021

    CAS  Google Scholar 

  • Satoh-Nagasawa N, Mori M, Nakazawa N et al (2012) Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol 53:213–224

    CAS  Google Scholar 

  • Schellingen K, Van DerStraeten D, Van denBussche F, Prinsen E, Remans T, Vangronsveld J et al (2014) Cadmium-induced ethylene production and responses in Arabidopsis thaliana relyon ACS2 and ACS6 gene expression. BMC Plant Biol 14:214

    Google Scholar 

  • Schellingen K, Van Der Straeten D, Remans T, Loix C, Vangronsveld J, Cuypers A (2015) Ethylene biosynthesis is involved in the early oxidative challenge induced by moderate Cd exposure in Arabidopsis thaliana. Environ Exp Bot 117:1–11

    CAS  Google Scholar 

  • Schreck E, Laplanche C, Guédard ML, Bessoule JJ, Austruy A, Xiong T, Foucault Y, Dumat C (2013) Influence of fine process particles enriched with metals and metalloids on Lactuca sativa L. leaf fatty acid composition following air and/or soil plant field exposure. Environ Pollut 179:242–249

    CAS  Google Scholar 

  • Shahid M, Xiong T, Castrec Rouelle M, Leveque T, Dumat C (2013) Water extraction kinetics of metals, arsenic and dissolved organic carbon from industrial contaminated poplar leaves. J Environ Sci 25:2451–2459

    CAS  Google Scholar 

  • Shahid M, Pourrut B, Dumat C et al (2014) Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev Environ Contam Toxicol 232:1–44

    CAS  Google Scholar 

  • Shahid M, Dumat C, Khalid S et al (2017) Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater 325:36–58

    CAS  Google Scholar 

  • Shahid M, Khalid S, Abbas G, Shahid N, Nadeem M, Sabir M, Aslam M, Dumat C (2015) Heavy metal stress and crop productivity. In: KR Hakeem (Ed) Crop Production and Global Environmental Issues SE −1, Springer International Publishing, pp 1–25

  • Sheikh AH, Badmi R, Jalmi SK, Wankhede DP, Singh P, Sinha AK (2013) Interaction between two rice mitogen activated protein kinases and its possible role in plant defense. BMC Plant Biol 13:121

    Google Scholar 

  • Shen H, Hou N, Schlicht M, Wan Y, Mancuso S, Baluska F (2008) Aluminium toxicity targets PIN2 in Arabidopsis root apices: effects on PIN2 endocytosis, vesicular recycling, and polar auxin transport. Chin Sci Bull 53:2480–2487

    CAS  Google Scholar 

  • Shen GM, Du QZ, Wang JX (2012) Involvement of plasma membrane Ca2+/H+ antiporter in Cd2+ tolerance. Rice Sci 19:161–165

    Google Scholar 

  • Shen JQ, Zheng ZZ, Pan WH, Pan JW (2014) Functions and action mechanisms of CBL-CIPK signaling system in plants. Plant Physiol J 50:641–650

    CAS  Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2009) Phytomining: a review. Miner Eng 22:1007–1019

    CAS  Google Scholar 

  • Shim D, Kim S, Choi YI et al (2013) Transgenic poplar trees expressing yeast cadmium factor 1 exhibit the characteristics necessary for the phytoremediation of mine tailing soil. Chemosphere 904:1478–1486

    Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Sakran AM, Basalah MO, Ali HM (2012) Effect of calcium and potassium on antioxidant system of Viciafaba L. under cadmium stress. Int J Mol Sci 13:6604–6619

    CAS  Google Scholar 

  • Siemianowski O, Barabasz A, Kendziorek M, Ruszczyńska A, Bulska E, Williams LE, Antosiewicz DM (2014) AtHMA4 expression in tobacco reduces Cd accumulation due to the induction of the apoplastic barrier. J Exp Bot 65:1125–1139

    CAS  Google Scholar 

  • Singh K, Foley RC, Onate-Sanchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436

    CAS  Google Scholar 

  • Singh P, Mohanta TK, Sinha AK (2015) Unraveling the intricate nexus of molecular mechanisms governing rice root development: OsMPK3/6 and auxin–cytokinin interplay. PLoS ONE 10:e0123620

    Google Scholar 

  • Sinha AK, Jaggi M, Raghuram B, Tuteja N (2011) Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal Behav 6:196–203

    CAS  Google Scholar 

  • Solis EG, Taylor NJ, Siritunga D, Stevens W, Schachtman DP (2015) Overexpression of the transporters AtZIP1 and AtMTP1 in cassava changes zinc accumulation and partitioning. Front Plant Sci 6:492

    Google Scholar 

  • Song WY, Sohn EJ, Martinoia E et al (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919

    CAS  Google Scholar 

  • Song W, Park J, Mendoza-Cozatl D et al (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci U S A 107:21187–21192

    CAS  Google Scholar 

  • Souza LA, Piotto FA, Nogueirol RC, Azevedo RA (2013) Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents. Scientia Agricola 70:290–295

    CAS  Google Scholar 

  • Srivastava RK, Pandey P, Rajpoot R, Rani A, Dubey RS (2014) Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. Protoplasma 251:1047–1065

    CAS  Google Scholar 

  • Srivastava RK, Pandey P, Rajpoot R, Rani A, Gautam A, Dubey RS (2015) Exogenous application of calcium and silica alleviates cadmium toxicity by suppressing oxidative damage in rice seedlings. Protoplasma 252:959–975

    CAS  Google Scholar 

  • Steinhorst L, Kudla J (2014) Signaling in cells and organisms–calcium holds the line. Curr Opin Plant Biol 22:14–21

    CAS  Google Scholar 

  • Sun P, Tian QY, Chen J, Zhang WH (2010) Aluminium-induced inhibition of root elongation in Arabidopsis is mediated by ethylene and auxin. J Exp Bot 61:347–356

    CAS  Google Scholar 

  • Sun N, Liu M, Zhang W, Yang W, Bei X, Ma H, Qiao F, Qi X (2015) Bean metal-responsive element-binding transcription factor confers cadmium resistance in tobacco. Plant Physiol 167:1136–1148

    CAS  Google Scholar 

  • Sunkar R, Kaplan B, Bouche N, Arazi T, Dolev D, Talke IN et al (2000) Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1gene confer Pb2+ tolerance. Plant J 24:533–542

    CAS  Google Scholar 

  • Suzuki N, Koizumi N, Sano H (2001) Screening of cadmium responsive genes in Arabidopsis thaliana. Plant Cell Environ 2:1177–1188

    Google Scholar 

  • Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S et al (2011) The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot 62:4843–4850

    CAS  Google Scholar 

  • Takahashi R, Bashir K, Ishimaru Y, Nishizawa NK, Nakanishi H (2012a) The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant Signal Behav 7:1605–1607

    CAS  Google Scholar 

  • Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa NK et al (2012b) The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ 35:1948–1957

    CAS  Google Scholar 

  • Takahashi R, Ishimaru Y, Shimo H et al (2014) From laboratory to field: OsNRAMP5-knockdown rice is a promising candidate for Cd phytoremediation in paddy fields. PLoS ONE 9(6):e98816

    Google Scholar 

  • Tang L, Mao B, Li Y et al (2017a) Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep 7:1–12

    Google Scholar 

  • Tang Z, Cai H, Li J et al (2017b) Allelic variation of NtNramp5 associated with cultivar variation in cadmium accumulation in tobacco. Plant Cell Physiol 58:1583–1593

    CAS  Google Scholar 

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci U S A 97:4991–4996

    CAS  Google Scholar 

  • Thomine S, Lelièvre F, Debarbieux E, Schroeder JI (2003) AtNRAMP3, a multi-specific vacuolar metal transporter involved in plant responses to iron deficiency. Plant J 34:685–695

    CAS  Google Scholar 

  • Tounsi S, Feki K, Kamoun Y et al (2019) Highlight on the expression and the function of a novel MnSOD from diploid wheat (T. monococcum) in response to abiotic stress and heavy metal toxicity. Plant Physiol Biochem 142:384–394

    CAS  Google Scholar 

  • Ueno D, Milner MJ, Yamaji N, Yokosho K, Koyama E, Clemencia Zambrano M et al (2011) Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Plant J 66:852–862

    CAS  Google Scholar 

  • Ullah I, Wang Y, Eide DJ, Dunwell JM (2018) Evolution, and functional analysis of natural resistance-associated macrophage proteins (NRAMPs)from Theobroma cacao and their role in cadmium accumulation. Sci Rep 8:14412

    Google Scholar 

  • Uzu G, Sauvain JJ, Baeza-Squiban A et al (2011) In vitro assessment of the pulmonary toxicity and gastric availability of leadrich particles from a lead recycling plant. Environ Sci Technol 45:7888–7895

    CAS  Google Scholar 

  • Vacchina V, Mari S, Czernic P, Marques L, Pianelli K, Schaumloffel D, Lebrun M, Lobinski R (2003) Speciation of nickel in a hyperaccumulating plant by high performance liquid chromatography-inductively coupled plasma mass spectrometry and electrospray MS/MS assisted by cloning using yeast complementation. Anal Chem 75:2740–2745

    CAS  Google Scholar 

  • Van de Mortel JE, Almar Villanueva L, Schat H et al (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147

    Google Scholar 

  • Van de Mortel JE, Schat H, Moerland PD et al (2008) Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmiumin Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 31:301–324

    Google Scholar 

  • Van der Does D, Leon-Reyes A, Koornneef A et al (2013) Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59. Plant Cell 25:744–761

    Google Scholar 

  • Van der Zaal BJ, Neuteboom LW et al (1999) Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–1055

    Google Scholar 

  • Vassilev A, Nikolova A, Koleva L, Lidon F (2011) Effects of excess Zn on growth and photosynthetic performance of young bean plants. J Phytol 3:58–62

    CAS  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    CAS  Google Scholar 

  • Verret F, Gravot A, Auroy P et al (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576:306–312

    CAS  Google Scholar 

  • Vert G, Barberon M, Zelazny E, Séguéla M, Briat JF, Curie C (2009) Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells. Planta 229:1171–1179

    CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    CAS  Google Scholar 

  • Wang S, Ren X, Huang B, Wang G, Zhou P, An Y (2016) Aluminium induced reduction of plant growth in alfalfa (Medicago sativa) is mediated by interrupting auxin transport and accumulation in roots. Sci Rep 6:30079

    CAS  Google Scholar 

  • Wang C, Wang J, Wang X, Xia Y, Chen C, Shen Z, Chen Y (2017) Proteomic analysis on roots of Oenothera glazioviana under copper-stress conditions. Sci Rep 7:1058

    Google Scholar 

  • Wanke D, Kolukisaoglu HU (2010) An update on the ABCC transporter family in plants: many genes, many proteins, but how many functions? Plant Biol 1:15–25

    Google Scholar 

  • Wankhede DP, Kumar K, Singh P, Sinha AK (2013) Involvement of mitogen activated protein kinase kinase 6 in UV induced transcripts accumulation of genes in phytoalexin biosynthesis in rice. Rice 6:35

    Google Scholar 

  • Weber M, Harada E, Vess C, Roepenack-Lahaye EV, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis helleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281

    CAS  Google Scholar 

  • Weber M, Trampczynska A, Clemens S (2006) Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+- hyper-tolerant facultative metallophyte Arabidopsis halleri. Plant Cell Environ 29:950–963

    CAS  Google Scholar 

  • Wen XP, Ban Y, Inoue H, Matsuda N, Moriguchi T (2010) Spermidine levels are implicated in heavy metal tolerance in a spermidine synthase overexpressing transgenic European pear by exerting antioxidant activities. Transgenic Res 19:91–103

    CAS  Google Scholar 

  • Williams LE, Mills RF (2005) P(1B-) ATPases-an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci 10:491–502

    CAS  Google Scholar 

  • Wojas S, Clemens S, Hennig J et al (2008) Overexpression of phytochelatin synthase in tobacco: distinctive effects of AtPCS1 and CePCS genes on plant response to cadmium. J Exp Bot 59(8):2205–2219

    CAS  Google Scholar 

  • Wojas S, Hennig J, Plaza S et al (2009) Ectopic expression of Arabidopsis ABC transporter MRP7 modifies cadmium root-to-shoot transport and accumulation. Environ Poll 157:2781–2789

    CAS  Google Scholar 

  • Wojas S, Ruszczyńska A, Bulska E, Clemens S, Antosiewicz DM (2010) The role of subcellular distribution of cadmium and phytochelatins in the generation of distinct phenotypes of AtPCS1- and CePCS3-expressing tobacco. J Plant Physiol 167:981–988

    Google Scholar 

  • Wojcik P (2004) Uptake of mineral nutrients from foliar fertilization. J Fruit Ornamental Plant Res 12

  • Wong CKE, Cobbett CS (2009) HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytol 181:71–78

    CAS  Google Scholar 

  • Wu H, Chen C, Du J, Liu H et al (2012) Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-enhance cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots. Plant Physiol 158:790–800

    CAS  Google Scholar 

  • Wycisk K, Kim EJ, Schroeder JI, Krämer U (2004) Enhancing the first enzymatic step in the histidine biosynthesis pathway increases the free histidine pool and nickel tolerance in Arabidopsis thaliana. FEBS Lett 57:128–134

    Google Scholar 

  • Xia Y, Qi Y, Yuan Y, Wang G, Cui J, Chen Y, Zhang H, Shen Z (2012) Overexpression of Elsholtzia haichowensis metallothionein 1 (EhMT1) in tobacco plants enhances copper tolerance and accumulation in root cytoplasm and decreases hydrogen peroxide production. J Hazard Mater 233:65–71

    Google Scholar 

  • Xie K, Chen J, Wang Q, Yang Y (2014) Direct phosphorylation and activation of a mitogen-activated protein kinase by a calcium-dependent protein kinase in rice. Plant Cell 26:3077–3089

    CAS  Google Scholar 

  • Xu W, Shi W, Liu F, Ueda A, Takabe T (2008) Enhanced zinc and cadmium tolerance and accumulation in transgenic Arabidopsis plants constitutively overexpressing a barely gene (HvAPX1) that encodes a peroxisomal ascorbate peroxidase. Botany 86:6

    Google Scholar 

  • Xu H, Xu W, Xi H, Ma W, He Z, Ma M (2013) The ER luminal binding protein (BiP) alleviates Cd2+-induced programmed cell death through endoplasmic reticulum stress-cell death signalling pathway in tobacco cells. J Plant Physiol 170:1434–1441

    CAS  Google Scholar 

  • Yang H, Zhang XY, Wang G (2004) Effects of heavy metals on stomatal movements in broad bean leaves. Russian J Plant Physiol 51:464–468

    CAS  Google Scholar 

  • Yang J, Wang Y, Liu G, Yang C, Li C (2011) Tamarix hispida metallothionein-like ThMT3, a reactive oxygen species scavenger, increases tolerance against Cd2+, Zn2+, Cu2+, and NaCl in transgenic yeast. Mol Biol Rep 38:567–1574

    Google Scholar 

  • Yang Y, Zhang L, Huang X et al (2020) Response of photosynthesis to different concentrations of heavy metals in Davidiainvolucrate. PLoS One 15(3):e0228563

    CAS  Google Scholar 

  • Yeh CM, Chien PS, Huang HJ (2007) Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. J Exp Bot 58:659–671

    CAS  Google Scholar 

  • Yoo SD, Cho YH, Tena G, Xiong Y, Sheen J (2008) Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451:789–795

    CAS  Google Scholar 

  • Yuan HM, Huang X (2016) Inhibition of root meristem growth by cadmium involves nitric oxide-mediated repression of auxin accumulation and signaling in Arabidopsis. Plant Cell Environ 39:120–135

    CAS  Google Scholar 

  • Zanella L, Fattorini L, Brunetti P et al (2016) Overexpression of AtPCS1 in tobacco increases arsenic and arsenic plus cadmium accumulation and detoxification. Planta 243:605–622

    CAS  Google Scholar 

  • Zeng H, Xu L, Singh A et al (2015) Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. Front Plant Sci 6:600

    Google Scholar 

  • Zeng H, Zhang X, Ding M, Zhang X, Zhu Y (2019) Transcriptome profiles of soybean leaves and roots in response to zinc deficiency. Physiol Plant 167:330–351

    CAS  Google Scholar 

  • Zhang GB, Yi HY, Gong JM (2014a) The Arabidopsis ethylene/jasmonic acid-NRT signaling module coordinates nitrate reallocation and the trade-off between growth and environmental adaptation. Plant Cell 26:3984–3998

    CAS  Google Scholar 

  • Zhang J, Zhang M, Tian S, Lu L, Shohag MJI et al (2014) Metallothionein 2 (SaMT2) from Sedum alfredii Hance confers increased Cd tolerance and accumulation in yeast and tobacco. PLoS One 9(7):e102750

    Google Scholar 

  • Zhang M, Zhang J, Lu LL, Zhu ZQ, Yang XE (2016) Functional analysis of CAX2-like transporters isolated from two ecotypes of Sedum alfredii. Biol Plantarum 60:37–47

    CAS  Google Scholar 

  • Zhang H, Lv S, Xu H et al (2017) H2O2 is involved in the metallothionein-mediated rice tolerance to copper and cadmium toxicity. Int J Mol Sci 18:2083

    Google Scholar 

  • Zhang C, Lu W, Yang Y, Shen Z, Ma JF, Zheng L (2018a) OsYSL16 is required for preferential Cu distribution to floral organs in rice. Plant Cell Physiol 59:2039–2051

    CAS  Google Scholar 

  • Zhang X, Rui H, Zhang F, Hu Z, Xia Y, Shen Z (2018b) Overexpression of a functional Vicia sativa PCS1 homolog increases cadmium tolerance and phytochelatins synthesis in Arabidopsis. Front Plant Sci 9:107

    Google Scholar 

  • Zhao L, Sun YL, Cui SX et al (2011) Cd-induced changes in leaf proteome of the hyperaccumulator plant Phytolacca americana. Chemosphere 85:56–66

    CAS  Google Scholar 

  • Zhao FY, Hu F, Zhang SY et al (2013) MAPKs regulate root growth by influencing auxin signaling and cell cycle-related gene expression in cadmium-stressed rice. Environ Sci Pollut Res Int 20:5449–5460

    CAS  Google Scholar 

  • Zhao FY, Wang K, Zhang SY, Ren J, Liu T, Wang X (2014a) Crosstalk between ABA, auxin, MAPK signaling, and the cell cycle in cadmium-stressed rice seedlings. Acta Physiol Plant 36:1879–1892

    CAS  Google Scholar 

  • Zhao L, Wang P, Hou H, Zhang H et al (2014) Transcriptional regulation of cell cycle genes in response to abiotic stresses correlates with dynamic changes in histone modifications in maize. PLoS ONE 9(8):e106070

    Google Scholar 

  • Zhu Z, An F, Feng Y, Li P et al (2011) Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci U S A 108:12539–12544

    CAS  Google Scholar 

  • Zou J, Wang G, Ji J, Wang J, Wu H, Ou Y, Li B (2017) Transcriptional, physiological and cytological analysis validated the roles of some key genes linked Cd stress in Salix matsudana Koidz. Environ Exp Bot 134:116–129

    CAS  Google Scholar 

Download references

Funding

This work was supported through funding by the Ministry of Higher Education and Scientific Research of Tunisia.

Author information

Authors and Affiliations

Authors

Contributions

K.F., H.M., and F.B. conceived and designed the content of the review. M.M. and H.M. proposed valuable ideas and opinions. K.F. and S.T. wrote the manuscript and prepared the figure photos. All authors read and approved the manuscript.

Corresponding author

Correspondence to Faiçal Brini.

Ethics declarations

Ethical approval and consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Elena Maestri

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feki, K., Tounsi, S., Mrabet, M. et al. Recent advances in physiological and molecular mechanisms of heavy metal accumulation in plants. Environ Sci Pollut Res 28, 64967–64986 (2021). https://doi.org/10.1007/s11356-021-16805-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16805-y

Keywords

Navigation