Skip to main content

Advertisement

Log in

Effect of degradation of a black mangrove forest on seasonal greenhouse gas emissions

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Mangroves play an essential role in the global carbon cycle. However, they are highly vulnerable to degradation with little-known effects on greenhouse gas (GHG) emissions. This study compared seasonal soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes from a black mangrove (Avicennia germinans) forest in the Tampamachoco coastal lagoon, Veracruz, Mexico, in areas subjected to different degrees of environmental degradation (full canopy, transitional and dead mangrove), caused by hydrological perturbation. Furthermore, we aimed at determining the environmental factors driving seasonal fluxes. There was a combined effect of seasonality and degradation on CH4 fluxes, highest during the rainy season in the dead mangrove (0.93 ± 0.18 mg CH4 m-2 h-1). CO2 fluxes were highest during the dry season (220 ± 23 mg CO2 m-2 h-1), with no significant differences among degradation levels. N2O fluxes did not vary among seasons or degradation levels (− 3.8 to 2.9 mg N2O m-2 h-1). The overall CO2-eq emission rate was 15.3 ± 2.7 Mg CO2-eq ha-1 year-1, with CO2 as the main gas contributing to total emissions. The main factors controlling CH4 fluxes were seasonal porewater salinity and the availability of NO2, NO3, and SO4–2 in the soil, favored by high water level and temperature in the absence of pneumatophores. The main determining factors controlling CO2 fluxes were water level, porewater redox potential, and soil Cl and SO4–2 concentration. Finally, N2O fluxes were related to NO2, NO3, and SO4–2 soil concentrations. This study contributes to improving the knowledge of soil GHG fluxes dynamics in mangroves and the effect of degradation of these ecosystems on the coastal biogeochemical cycles, which may bring important insights for assessing accurate ways to mitigate climate change protecting and restoring these ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Al-Haj AN, Fulweiler RW (2020) A synthesis of methane emissions from shallow vegetated coastal ecosystems. Glob Chang Biol 26(5):2988–3005

    Google Scholar 

  • Allen DE, Dalal RC, Rennenberg H, Meyer RL, Reeves S, Schmidt S (2007) Spatial and temporal variation of nitrous oxide and methane flux between subtropical mangrove sediments and the atmosphere. Soil Biol Biochem 39(2):622–631. https://doi.org/10.1016/j.soilbio.2006.09.013

    Article  CAS  Google Scholar 

  • Allen D, Dalal RC, Rennenberg H, Schmidt S (2011) Seasonal variation in nitrous oxide and methane emissions from subtropical estuary and coastal mangrove sediments, Australia. Plant Biol 13(1):126–133. https://doi.org/10.1111/j.1438-8677.2010.00331.x

    Article  CAS  Google Scholar 

  • Alongi D (2009) The energetics of mangrove forests. Springer Science & Business Media.

  • Alongi DM (2018) Impact of global change on nutrient dynamics in mangrove forests. Forests 9(10):596

    Google Scholar 

  • Alongi DM, Brinkman R (2011) Hydrology and biogeochemistry of mangrove forests. In Forest hydrology and biogeochemistry. Springer, Dordrecht, pp 203–219

    Google Scholar 

  • Araujo J, Naqvi SWA, Naik H, Naik R (2018) Biogeochemistry of methane in a tropical monsoonal estuarine system along the west coast of India. Estuar Coast Shelf Sci 207:435–443

    CAS  Google Scholar 

  • Atwood TB, Connolly RM, Almahasheer H, Carnell PE, Duarte CM, Lewis CJE, Irigoien X, Kelleway JJ, Lavery PS, Macreadie PI, Serrano O, Sanders CJ, Santos I, Steven ADL, Lovelock CE (2017) Global patterns in mangrove soil carbon stocks and losses. Nat Clim Chang 7(7):523–528. https://doi.org/10.1038/nclimate3326

    Article  CAS  Google Scholar 

  • Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81(2):169–193

    Google Scholar 

  • Bauza JF, Morell JM, Corredor J E (2002) Biogeochemistry of nitrous oxide production in the red mangrove (Rhizophora mangle) forest sediments. Estuarine, Coastal and Shelf Science 55(5);697–704

  • Botello AV, de la Lanza EG, Fragoso SV, Vélez GP (2019) Pollution issues in Coastal Lagoons in the Gulf of Mexico. In Lagoon Environments Around the World-A Scientific Perspective. IntechOpen. https://doi.org/10.5772/intechopen.86537

  • Bouillon S, Connolly RM, Lee SY (2008) Organic matter exchange and cycling in mangrove ecosystems: recent insights from stable isotope studies. J Sea Res 59(1-2):44–58

    CAS  Google Scholar 

  • Breitburg D, Levin LA, Oschlies A, Grégoire M, Chavez FP, Conley DJ, Garçon V, Gilbert D, Gutiérrez D, Isensee K, Jacinto GS, Limburg KE, Montes I, Naqvi SWA, Pitcher GC, Rabalais NN, Roman MR, Rose KA, Seibel BA, Telszewski M, Yasuhara M, Zhang J (2018) Declining oxygen in the global ocean and coastal waters. Science 359(6371):eaam7240

    Google Scholar 

  • Bulmer RH, Lundquist CJ, Schwendenmann L (2015) Sediment properties and CO2 efflux from intact and cleared temperate mangrove forests. Biogeosciences 12(20):6169–6180. https://doi.org/10.5194/bg-12-6169-2015

    Article  Google Scholar 

  • Cabezas A, Mitsch WJ, MacDonnell C, Zhang L, Bydałek F, Lasso A (2018) Methane emissions from mangrove soils in hydrologically disturbed and reference mangrove tidal creeks in southwest Florida. Ecol Eng 114(August):57–65. https://doi.org/10.1016/j.ecoleng.2017.08.041

    Article  Google Scholar 

  • Cameron C, Hutley LB, Friess DA, Munksgaard NC (2019) Hydroperiod, soil moisture and bioturbation are critical drivers of greenhouse gas fluxes and vary as a function of landuse change in mangroves of Sulawesi, Indonesia. Sci Total Environ 654:365–377

    CAS  Google Scholar 

  • Cameron C, Hutley LB, Munksgaard NC, Phan S, Aung T, Thinn T, Aye WM, Lovelock CE (2020) Impact of an extreme monsoon on CO2 and CH4 fluxes from mangrove soils of the Ayeyarwady Delta, Myanmar. Sci Total Environ 760:143422

    Google Scholar 

  • Cao L, Zhou Z, Xu X, Shi F (2020) Spatial and temporal variations of the greenhouse gas emissions in coastal saline wetlands in southeastern China. Environ Sci Pollut Res 27:1118–1130. https://doi.org/10.1007/s11356-019-06951-9

  • Castillo JAA, Apan AA, Maraseni TN, Salmo SG (2017) Soil greenhouse gas fluxes in tropical mangrove forests and in land uses on deforested mangrove lands. Catena 159(June):60–69. https://doi.org/10.1016/j.catena.2017.08.005

    Article  CAS  Google Scholar 

  • Chauhan R, Ramanathan AL, Adhya TK (2008) Assessment of methane and nitrous oxide flux from mangroves along Eastern coast of India. Geofluids 8(4):321–332. https://doi.org/10.1111/j.1468-8123.2008.00227.x

    Article  CAS  Google Scholar 

  • Chen GC, Tam NFY, Ye Y (2010) Summer fluxes of atmospheric greenhouse gases N2O, CH4 and CO2 from mangrove soil in South China. Sci Total Environ 408(13):2761–2767. https://doi.org/10.1016/j.scitotenv.2010.03.007

    Article  CAS  Google Scholar 

  • Chen GC, Tam NFY, Wong YS, Ye Y (2011) Effect of wastewater discharge on greenhouse gas fluxes from mangrove soils. Atmos Environ 45(5):1110–1115

    CAS  Google Scholar 

  • Chen GC, Tam NFY, Ye Y (2012) Spatial and seasonal variations of atmospheric N2O and CO2 fluxes from a subtropical mangrove swamp and their relationships with soil characteristics. Soil Biol Biochem 48:175–181. https://doi.org/10.1016/j.soilbio.2012.01.029

    Article  CAS  Google Scholar 

  • Chen GC, Ulumuddin YI, Pramudji S, Chen SY, Chen B, Ye Y, Ou DY, Ma ZY, Huang H, Wang JK (2014) Rich soil carbon and nitrogen but low atmospheric greenhouse gas fluxes from North Sulawesi mangrove swamps in Indonesia. Sci Total Environ 487:91–96. https://doi.org/10.1016/j.scitotenv.2014.03.140

    Article  CAS  Google Scholar 

  • Chuang PC, Young MB, Dale AW, Miller LG, Herrera‐Silveira JA, Paytan A (2017) Methane fluxes from tropical coastal lagoons surrounded by mangroves, Yucatán, Mexico. Journal of Geophysical Research: Biogeosciences 122(5):1156–1174

  • Collins ME, Kuehl RJ (2001) Organic matter accumulation and organic soils. In: Wetland soils, genesis, hydrology, landscapes, and classification. Lewis Pub, Boca Raton, pp 137–162

    Google Scholar 

  • Corredor JE, Morell JM, Bauza J (1999) Atmospheric nitrous oxide fluxes from mangrove sediments. Mar Pollut Bull 38(6):473–478

    CAS  Google Scholar 

  • Costanza R, d'Arge R, De Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill R, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world's ecosystem services and natural capital. Nature 387(6630):253–260

    CAS  Google Scholar 

  • Davies JL (1964) A morphogenic approach to world shorelines. Z Geomorphol 8:127–142

    Google Scholar 

  • Dick WA, Tabatabai MA (1979) Ion chromatographic determination of sulfate and nitrate in soils. Soil Science Society of America Journal 43(5):899–904

  • Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4(5):293–297. https://doi.org/10.1038/ngeo1123

    Article  CAS  Google Scholar 

  • Doner HE, Volz MG, Belser LW, Løken JP (1975) Short term nitrate losses and associated microbial populations in soil columns. Soil Biol Biochem 7(4-5):261–263

    CAS  Google Scholar 

  • Egger M, Lenstra W, Jong D, Meysman FJR, Sapart CJ, van der Veen C, Röckmann T, Gonzalez S, Slomp CP (2016) Rapid sediment accumulation results in high methane effluxes from coastal sediments. PLoS One 11(8):e0161609. https://doi.org/10.1371/journal.pone.0161609

    Article  CAS  Google Scholar 

  • Firestone MK, Davidson EA (1989) Microbiological basis of NO and N2O production and consumption in soil. Exchange of trace gases between terrestrial ecosystems and the atmosphere, 47, 7-21.

  • Friedlingstein P, O'Sullivan M, Jones MW, Andrew RM, Hauck J, Olsen A, Peters GP, Peters W, Pongratz J, Sitch S, le Quéré C, Canadell JG, Ciais P, Jackson RB, Alin S, Aragão LEOC, Arneth A, Arora V, Bates NR, Becker M, Benoit-Cattin A, Bittig HC, Bopp L, Bultan S, Chandra N, Chevallier F, Chini LP, Evans W, Florentie L, Forster PM, Gasser T, Gehlen M, Gilfillan D, Gkritzalis T, Gregor L, Gruber N, Harris I, Hartung K, Haverd V, Houghton RA, Ilyina T, Jain AK, Joetzjer E, Kadono K, Kato E, Kitidis V, Korsbakken JI, Landschützer P, Lefèvre N, Lenton A, Lienert S, Liu Z, Lombardozzi D, Marland G, Metzl N, Munro DR, Nabel JEMS, Nakaoka SI, Niwa Y, O'Brien K, Ono T, Palmer PI, Pierrot D, Poulter B, Resplandy L, Robertson E, Rödenbeck C, Schwinger J, Séférian R, Skjelvan I, Smith AJP, Sutton AJ, Tanhua T, Tans PP, Tian H, Tilbrook B, van der Werf G, Vuichard N, Walker AP, Wanninkhof R, Watson AJ, Willis D, Wiltshire AJ, Yuan W, Yue X, Zaehle S (2020) Global carbon budget 2020. Earth Syst Sci Data 12(4):3269–3340

    Google Scholar 

  • Gnanamoorthy P, Selvam V, Burman PKD, Chakraborty S, Karipot A, Nagarajan R et al (2020) Seasonal variations of net ecosystem (CO2) exchange in the Indian tropical mangrove forest of Pichavaram. Estuar Coast Shelf Sci 243:106828

    CAS  Google Scholar 

  • Hamilton S, Casey D (2016) Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob Ecol Biogeogr 25:729–738

    Google Scholar 

  • He Y, Guan W, Xue D, Liu L, Peng C, Liao B, Hu J, Zhu Q, Yang Y, Wang X, Zhou G, Wu Z, Chen H (2019) Comparison of methane emissions among invasive and native mangrove species in Dongzhaigang, Hainan Island. Sci Total Environ 697:133945. https://doi.org/10.1016/j.scitotenv.2019.133945

    Article  CAS  Google Scholar 

  • Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. The ISME journal 5(10):1571–1579

  • Hernández ME, Junca-Gómez D (2020) Carbon stocks and greenhouse gas emissions (CH4 and N2O) in mangroves with different vegetation assemblies in the central coastal plain of Veracruz Mexico. Sci Total Environ 741:140276. https://doi.org/10.1016/j.scitotenv.2020.140276

    Article  CAS  Google Scholar 

  • Hernández ME, Mitsch WJ (2006) Influence of hydrologic pulses and vegetation on nitrous oxide emissions from created riparian marshes in Midwestern USA. Wetlands 26:862e877

    Google Scholar 

  • Hernández ME, Marín-Muñiz JL, Moreno-Casasola P, Vázquez V (2015) Comparing soil carbon pools and carbon gas fluxes in coastal forested wetlands and flooded grasslands in Veracruz, Mexico. Int J Biodivers Sci Ecosyst Serv Manag. https://doi.org/10.1080/21513732.2014.925977

  • Himes-Cornell A, Grose SO, Pendleton L (2018) Mangrove ecosystem service values and methodological approaches to valuation: where do we stand? Front Mar Sci 5:376. https://doi.org/10.3389/fmars.2018.00376

    Article  Google Scholar 

  • Hofmann DJ, Butler JH, Dlugokencky EJ, Elkins JW, Masarie K, Montzka SA, Tans P (2006) The role of carbon dioxide in climate forcing from 1979 to 2004: introduction of the Annual Greenhouse Gas Index. Tellus Ser B Chem Phys Meteorol 58(5):614–619

    Google Scholar 

  • Hori M, Bayne CJ, Kuwae T (2019) Blue carbon: characteristics of the ocean’s sequestration and storage ability of carbon dioxide. In: In Blue Carbon in Shallow Coastal Ecosystems. Springer, Singapore, pp 1–31

    Google Scholar 

  • Inoue T, Nohara S, Takagi H, Anzai Y (2011) Contrast of nitrogen contents around roots of mangrove plants. Plant Soil 339(1):471–483

    CAS  Google Scholar 

  • IPCC (2013) Climate Change 2013: The Physical Science Basis. In: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Retrieved from Cambridge, United Kingdom and New York

    Google Scholar 

  • IPCC (2014) Cambio climático 2014: Impactos, adaptación y vulnerabilidad – Resumen para responsables de políticas. Contribución del Grupo de trabajo II al Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático [Field C.B., et al., (Eds.)]. Organización Meteorológica Mundial, Ginebra, Suiza, 34 pp. (in Spanish)

  • IPCC (2021) Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., et al., (eds.)]. Cambridge University Press. In Press.

  • Jackson PE (2000) Ion chromatography in environmental analysis. Encycl Anal Chem 2779.

  • Jacotot A, Marchand C, Allenbach M (2018) Tidal variability of CO2 and CH4 emissions from the water column within a Rhizophora mangrove forest (New Caledonia). Sci Total Environ 631–632:334–340. https://doi.org/10.1016/j.scitotenv.2018.03.006

    Article  CAS  Google Scholar 

  • Jeffrey LC, Reithmaier G, Sippo JZ, Johnston SG, Tait DR, Harada Y, Maher DT (2019) Are methane emissions from mangrove stems a cryptic carbon loss pathway? Insights from a catastrophic forest mortality. New Phytol 224(1):146–154. https://doi.org/10.1111/nph.15995

    Article  CAS  Google Scholar 

  • Joos F, Spahni R (2008) Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proc Natl Acad Sci USA 105:1425–1430

    CAS  Google Scholar 

  • Kauffman JB, Donato DC (2012) Protocols for the measurement, monitoring and reporting of structure, biomass, and carbon stocks in mangrove forests. Working paper 86. Bogor, Indonesia.

  • Kauffman JB, Heider C, Cole T, Dwire KA, Donato DC (2011) Ecosystem carbon pools of Micronesian mangrove forests: implications of land use and climate change. Wetlands 31:343–352

    Google Scholar 

  • Kauffman JB, Hernández-Trejo H, Jesús-García M del Carmen, Heider C, Contreras W (2015) Carbon stocks of mangroves and losses arising from their conversion to cattle pastures in the Pantanos de Centla, Mexico. Montreal Canada. Wetlands Ecol Manag. 1-14. https://doi.org/10.1007/s11273-015-9453-z

  • Kauffman JB, Adame MF, Arifanti VB, Schile-Beers LM, Bernardino AF, Bhomia RK et al (2020) Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients.

  • Keller M, Weitz AM, Bryan B, Rivera MM, Silver WL (2000)Soil-atmosphere nitrogen oxide fluxes: effects of root disturbance. J Geophys Res-Atmos 105(D14):17693–17698

    CAS  Google Scholar 

  • Kelley CA, Bebout BM, Chanton JP, Detweiler AM, Frisbee A, Nicholson BE, Poole J, Tazaz A, Winkler C (2020) Correction to: The effect of bacterial sulfate reduction inhibition on the production and stable isotopic composition of methane in hypersaline environments. Aquat Geochem 26(3):311–325

    Google Scholar 

  • Kirchman DL, Dittel AI, Malmstrom RR, Cottrell MT (2005) Biogeography of major bacterial groups in the Delaware Estuary. Limnol Oceanogr 50:1697–1706

  • Konnerup D, Betancourt-Portela JM, Villamil C, Parra JP (2014) Nitrous oxide and methane emissions from the restored mangrove ecosystem of the Ciénaga Grande de Santa Marta, Colombia. Estuar Coast Shelf Sci 140:43–51. https://doi.org/10.1016/j.ecss.2014.01.006

    Article  CAS  Google Scholar 

  • Krauss KW, Demopoulos AW, Cormier N, From AS, McClain-Counts JP, Lewis RR III (2018) Ghost forests of Marco Island: mangrove mortality driven by belowground soil structural shifts during tidal hydrologic alteration. Estuar Coast Shelf Sci 212:51–62

    CAS  Google Scholar 

  • Kreuzwieser J, Buchholz J, Rennenberg H (2003) Emission of methane and nitrous oxide by Australian Mangrove Ecosystems. Plant Biol 5(4):423–431. https://doi.org/10.1055/s-2003-42712

    Article  CAS  Google Scholar 

  • Kristensen E, Flindt MR, Ulomi S, Borges AV, Abril G, Bouillon S (2008) Emission of CO2 and CH4 to the atmosphere by sediments and open waters in two Tanzanian mangrove forests. Mar Ecol Prog Ser 370:53–67

    CAS  Google Scholar 

  • Krithika K, Purvaja R, Ramesh R (2008) Fluxes of methane and nitrous oxide from an Indian mangrove. Curr Sci 94:218–224

    CAS  Google Scholar 

  • Lee RY, Porubsky WP, Feller IC, McKee K, Joye SB (2008) Porewater biogeochemistry and soil metabolism in dwarf red mangrove habitats (Twin Cays, Belize). Biogeochemistry 87(2):181–198

    CAS  Google Scholar 

  • Leopold A, Marchand C, Deborde J, Chaduteau C, Allenbach M (2013) Influence of mangrove zonation on CO2 fluxes at the sediment–air interface (New Caledonia). Geoderma 202:62–70

    Google Scholar 

  • Leopold A, Marchand C, Deborde J, Allenbach M (2015) Temporal variability of CO2 fluxes at the sediment-air interface in mangroves (New Caledonia). Sci Total Environ 502:617–626

    CAS  Google Scholar 

  • Lewis RR, Milbrandt EC, Brown B, Krauss KW, Rovai AS, Beever JW, Flynn LL (2016) Stress in mangrove forests: early detection and preemptive rehabilitation are essential for future successful worldwide mangrove forest management. Mar Pollut Bull 109(2):764–771. https://doi.org/10.1016/j.marpolbul.2016.03.006

    Article  CAS  Google Scholar 

  • Li X, Gao D, Hou L, Liu M (2019) Salinity stress changed the biogeochemical controls on CH4 and N2O emissions of estuarine and intertidal sediments. Sci Total Environ 652:593–601

    Google Scholar 

  • López Portillo JA, Lara Domínguez AL, Sáinz Hernández E, Vásquez VM, Rodríguez Rivera M, Martínez García MC, Bartolo Mateos O, Ortiz Vela II, Alvarado G (2014) Hydraulic restoration in the Tampamachoco lagoon in the state of Veracruz for the rehabilitation of the mangrove and its environmental services. Institute of Ecology, A.C. Final report SNIB-CONABIO, Project No. HH025, México. (in Spanish)

  • Lovelock CE (2008) Soil respiration and belowground carbon allocation in mangrove forests. Ecosystems 11:342–354. https://doi.org/10.1007/s10021-008-9125-4

    Article  CAS  Google Scholar 

  • Lovelock CE, Ruess RW, Feller IC (2011) Co2 efflux from cleared mangrove peat. PLoS One 6(6):1–4. https://doi.org/10.1371/journal.pone.0021279

    Article  CAS  Google Scholar 

  • Lovelock C, Megonigal JP, Saintilan N, Howard J, Isensee K (2014) How to estimate carbon dioxide emissions. In: Howard J, Hoyt S, Isensee K, Pidgeon E, Telszewski M (eds) Coastal Blue Carbon: Methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrass meadows. Arlington, Virginia, pp 25–38

    Google Scholar 

  • Lovley DR, Klug MJ (1983) Methanogenesis from methanol and methylamines and acetogenesis from hydrogen and carbon dioxide in the sediments of a eutrophic lake. Appl Environ Microbiol 45(4):1310–1315

    CAS  Google Scholar 

  • Maher DT, Cowley K, Santos IR, Macklin P, Eyre BD (2015) Methane and carbon dioxide dynamics in a subtropical estuary over a diel cycle: insights from automated in situ radioactive and stable isotope measurements. Mar Chem 168(November):69–79. https://doi.org/10.1016/j.marchem.2014.10.017

    Article  CAS  Google Scholar 

  • Maher DT, Sippo JZ, Tait DR, Holloway C, Santos IR (2016) Pristine mangrove creek waters are a sink of nitrous oxide. Sci Rep 6(December 2018):25701. https://doi.org/10.1038/srep25701

    Article  CAS  Google Scholar 

  • Marín-Muñiz JL, Hernández ME, Moreno-Casasola P (2015) Greenhouse gas emissions from coastal freshwater wetlands in Veracruz Mexico: effect of plant community and seasonal dynamics. Atmos Environ 107(26):107–117. https://doi.org/10.1016/j.atmosenv.2015.02.036

    Article  CAS  Google Scholar 

  • Marschner H (1996)Root-induced changes in the availability of micronutrients in the rhizosphere. Plant roots: the hidden half, 557-579.

  • McKee KL, Mendelssohn IA, Hester MW (1988) Reexamination of pore water sulfide concentrations and redox potentials near the aerial roots of Rhizophora mangle and Avicennia germinans. american. J Bot 75(9):1352–1359

    Google Scholar 

  • Muñoz-Hincapié M, Morell JM, Corredor JE (2002) Increase of nitrous oxide flux to the atmosphere upon nitrogen addition to red mangroves sediments. Mar Pollut Bull 44(10):992–996

    Google Scholar 

  • Murray R, Erler D, Rosentreter J, Maher D, Eyre B (2018) A seasonal source and sink of nitrous oxide in mangroves: insights from concentration, isotope, and isotopomer measurements. Geochim Cosmochim Acta 238:169–192

    CAS  Google Scholar 

  • Nikolov T, Petrov N (2014) Main factors influencing climate change: a review. C R Acad Bulg Sci 67(11)

  • Nóbrega GN, Ferreira TO, Siqueira Neto M, Queiroz HM, Artur AG, Mendonça EDS, Silva EDO, Otero XL (2016) Edaphic factors controlling summer (rainy season) greenhouse gas emissions (CO2 and CH4) from semiarid mangrove soils (NE-Brazil). Sci Total Environ 542:685–693. https://doi.org/10.1016/j.scitotenv.2015.10.108

    Article  CAS  Google Scholar 

  • Omerland RM (1988) Biogeochemistry of methanogenic bacteria. In: Zehnder AJB (ed) Biology of Anaerobic Microorganisms. Wiley, New York, pp 641–706

    Google Scholar 

  • Oremland RS, Polcin S (1982) Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments. Appl Environ Microbiol 44:1270–1276

    CAS  Google Scholar 

  • Oren A (2011) Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol 13(8):1908–1923

    CAS  Google Scholar 

  • Pendleton L, Donato DC, Murray BC, Crooks S, Jenkins WA, Sifleet S, Craft C, Fourqurean JW, Kauffman JB, Marbà N, Megonigal P, Pidgeon E, Herr D, Gordon D, Baldera A (2012) Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS One 7(9):e43542. https://doi.org/10.1371/journal.pone.0043542

    Article  CAS  Google Scholar 

  • Purvaja R, Ramesh R (2001) Natural and anthropogenic methane emission from coastal wetlands of South India. Environ Manag 27:547–557

    CAS  Google Scholar 

  • Purvaja R, Ramesh R, Frenzel P (2004)Plant-mediated methane emission from an Indian mangrove. Glob Chang Biol 10(11):1825–1834

    Google Scholar 

  • R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna URL https://www.R-project.org/

    Google Scholar 

  • Radabaugh KR, Dontis EE, Chappel AR, Russo CE, Moyer RP (2021) Early indicators of stress in mangrove forests with altered hydrology in Tampa Bay, Florida, USA. Estuar Coast Shelf Sci 254:107324

    Google Scholar 

  • Reithmaier GM, Johnston SG, Junginger T, Goddard MM, Sanders CJ, Hutley LB, ... & Maher DT (2021) Alkalinity production coupled to pyrite formation represents an unaccounted blue carbon sink. Global Biogeochemical Cycles 35(4):e2020GB006785 

  • Richardson JL, Vepraskas MJ (eds) (2001) Wetland soils—genesis, hydrology, landscapes and classification. Lewis Publishers, Boca Raton

    Google Scholar 

  • Rosentreter JA, Maher DT, Ho DT, Call M, Barr JG, Eyre BD (2017) Spatial and temporal variability of CO2 and CH4 gas transfer velocities and quantification of the CH4 microbubble flux in mangrove dominated estuaries. Limnol Oceanogr 62(2):561–578. https://doi.org/10.1002/lno.10444

    Article  Google Scholar 

  • Rosentreter JA, Maher DT, Erler DV, Murray R, Eyre BD (2018) Factors controlling seasonal CO2 and CH4 emissions in three tropical mangrove-dominated estuaries in Australia. Estuar Coast Shelf Sci 215:69–82. https://doi.org/10.1016/j.ecss.2018.10.003

    Article  CAS  Google Scholar 

  • Sánchez ÁS, Melchor GIH, Cruz JMZ, González CAZ, Galarza JLS (2018) Mangrove restoration an economical alternative for generating incomes. In: Leal Filho W., Pociovălișteanu D., Borges de Brito P., Borges de Lima I. (eds) Towards a Sustainable Bioeconomy: Principles, Challenges and Perspectives. World Sustainability Series. Springer, Cham. https://doi.org/10.1007/978-3-319-73028-8_16

  • Saunois M, Bousquet P, Poulter B, Peregon A, Ciais P, Canadell JG, Dlugokencky EJ, Etiope G, Bastviken D, Houweling S, Janssens-Maenhout G, Tubiello FN, Castaldi S, Jackson RB, Alexe M, Arora VK, Beerling DJ, Bergamaschi P, Blake DR, Brailsford G, Brovkin V, Bruhwiler L, Crevoisier C, Crill P, Covey K, Curry C, Frankenberg C, Gedney N, Höglund-Isaksson L, Ishizawa M, Ito A, Joos F, Kim HS, Kleinen T, Krummel P, Lamarque JF, Langenfelds R, Locatelli R, Machida T, Maksyutov S, McDonald KC, Marshall J, Melton JR, Morino I, Naik V, O'Doherty S, Parmentier FJW, Patra PK, Peng C, Peng S, Peters GP, Pison I, Prigent C, Prinn R, Ramonet M, Riley WJ, Saito M, Santini M, Schroeder R, Simpson IJ, Spahni R, Steele P, Takizawa A, Thornton BF, Tian H, Tohjima Y, Viovy N, Voulgarakis A, van Weele M, van der Werf GR, Weiss R, Wiedinmyer C, Wilton DJ, Wiltshire A, Worthy D, Wunch D, Xu X, Yoshida Y, Zhang B, Zhang Z, Zhu Q (2016) The global methane budget 2000-2012. Earth Syst Sci Data 8(2):697–751. https://doi.org/10.5194/essd-8-697-2016

    Article  Google Scholar 

  • Sela-Adler M, Ronen Z, Herut B, Antler G, Vigderovich H, Eckert W, Sivan O (2017)Co-existence of methanogenesis and sulfate reduction with common substrates in sulfate-rich estuarine sediments. Front Microbiol 8:766

    Google Scholar 

  • Sippo JZ, Lovelock CE, Santos IR, Sanders CJ, Maher DT (2018) Mangrove mortality in a changing climate: an overview. Estuar Coast Shelf Sci 215:241–249

    Google Scholar 

  • Sippo JZ, Sanders CJ, Santos IR, Jeffrey LC, Call M, Harada Y, Maguire K, Brown D, Conrad SR, Maher DT (2020) Coastal carbon cycle changes following mangrove loss. Limnol Oceanogr 65(11):2642–2656

    CAS  Google Scholar 

  • Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A (2003) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur J Soil Sci 54(4):779–791

    Google Scholar 

  • SMN (2021) Universidad Nacional Autónoma de México, Instituto de Geofísica, Servicio Mareografico Nacional, México. http://www.mareografico.unam.mx/portal/index.php?page=Estaciones. Accessed 26 August 2021 (in Spanish).

  • Sturm K, Werner U, Grinham A, Yuan Z (2017) Tidal variability in methane and nitrous oxide emissions along a subtropical estuarine gradient. Estuar Coast Shelf Sci 192:159–169. https://doi.org/10.1016/j.ecss.2017.04.027

    Article  CAS  Google Scholar 

  • The Ramsar Sites Information Service (2006) Manglares y Humedales de Tuxpan. Ramsar site No. 1602. https://rsis.ramsar.org/ris/1602?language=en. Accessed 20 May 2019 

  • Thibodeau FR, Nickerson NH (1986) Differential oxidation of mangrove substrate by Avicennia germinans and Rhizophora mangle. Am J Bot 73(4):512–516

    Google Scholar 

  • Tomlinson P (2016) Root systems. In: The Botany of Mangroves. Cambridge University Press, Cambridge, pp 90–108. https://doi.org/10.1017/CBO9781139946575.008

    Chapter  Google Scholar 

  • Verma A, Subramanian V, Ramesh R (2002) Methane emissions from a coastal lagoon: vembanad Lake, West Coast, India. Chemosphere 47(8):883–889

    CAS  Google Scholar 

  • Villa JA, Bernal B (2018) Carbon sequestration in wetlands, from science to practice: an overview of the biogeochemical process, measurement methods, and policy framework. Ecol Eng 114:115–128. https://doi.org/10.1016/j.ecoleng.2017.06.037

    Article  Google Scholar 

  • Vovides AG, López-Portillo J, Bashan Y (2011)N2-fixation along a gradient of long-term disturbance in tropical mangroves bordering the Gulf of Mexico. Biol Fertil Soils 47(5):567–576. https://doi.org/10.1007/s00374-011-0562-4

    Article  CAS  Google Scholar 

  • Wang H, Liao G, D'Souza M, Yu X, Yang J, Yang X, Zheng T (2016) Temporal and spatial variations of greenhouse gas fluxes from a tidal mangrove wetland in Southeast China. Environ Sci Pollut Res 23(2):1873–1885

    CAS  Google Scholar 

  • Watanabe K, Kuwae T (2015) Radiocarbon isotopic evidence for assimilation of atmospheric CO2 by the seagrass Zostera marina. Biogeosciences 12:6251–6258

    CAS  Google Scholar 

  • Welti N, Hayes M, Lockington D (2017) Seasonal nitrous oxide and methane emissions across a subtropical estuarine salinity gradient. Biogeochemistry 132(1-2):55–69

    CAS  Google Scholar 

  • Weste G, Cahill D, Stamps DJ (1982) Mangrove dieback in north Queensland, Australia. Trans Br Mycol Soc 79(1):165–167. https://doi.org/10.1016/S0007-1536(82)80208-8

    Article  Google Scholar 

  • WMO, World Meteorological Organization (2020) The estate of greenhouse gases in the atmosphere based on Global Observations through 2019. ISSN 2078-0796. No 16. 23 November 2020.

Download references

Acknowledgements

We thank M. Rivera, A. Ibarra, A. Corona, J.J. Von Thaden, E. Cruz, A. Hernández, A. Cristóbal, A. Cortes, and P. Malerva for their valuable help during fieldwork.

Funding

This study was funded by the Consejo Nacional de Ciencia y Tecnología (CONACYT), through a Basic Science Grant #258412 awarded to MEH, and by CONABIO projects MN001 and HH025 awarded to JLP. This study is in partial fulfillment of the doctorate degree of HRU at the Posgrado de Ecología y Manejo de Recursos (INECOL) with the support of a CONACYT grant #296826.

Author information

Authors and Affiliations

Authors

Contributions

HRU participated in conceptualization, methodology, investigation, formal analysis, and the original draft writing. JLP participated in conceptualization, funding acquisition, writing – review & editing, provided resources, and supervision. FR participated in writing - review & editing, and supervision. MEH participated in conceptualization, methodology, funding acquisition, writing – review & editing, provided resources, and supervision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to María E. Hernández.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero-Uribe, .M., López-Portillo, J., Reverchon, F. et al. Effect of degradation of a black mangrove forest on seasonal greenhouse gas emissions. Environ Sci Pollut Res 29, 11951–11965 (2022). https://doi.org/10.1007/s11356-021-16597-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16597-1

Keywords

Navigation