Skip to main content

Advertisement

Log in

Mechanisms underlying mercury detoxification in soil–plant systems after selenium application: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Feasible countermeasures to mitigate mercury (Hg) accumulation and its deleterious effects on crops are urgently needed worldwide. Selenium (Se) fertilizer application is a cost-effective strategy to reduce Hg concentrations, promote agro-environmental sustainability and food safety, and decrease the public health risk posed by Hg-contaminated soils and its accumulation in food crops. This holistic review focuses on the processes and detoxification mechanisms of Hg in whole soil–plant systems after Se application. The reduction of Hg bioavailability in soil, the formation of inert HgSe or/and HgSe-containing proteinaceous complexes in the rhizosphere and/or roots, and the reduction of plant root uptake and translocation of Hg in plant after Se application are systemically discussed. In addition, the positive responses in plant physiological and biochemical processes to Se application under Hg stress are presented to show the possible mechanisms for protecting the plant. However, application of high levels Se showed synergistic toxic effect with Hg and inhibited plant growth. The effectiveness of Se application methods, rates, and species on Hg detoxification is compared. This review provides a good approach for plant production in Hg-contaminated areas to meet food security demands and reduce the public health risk.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Not applicable

References

  • Abbas SM (2012) Effects of low temperature and selenium application on growth and the physiological changes in sorghum seedlings. J Stress Physiol Biochem 8:268–286

    Google Scholar 

  • Abbas SM (2013) Low levels of selenium application attenuate low temperature stress in sorghum [Sorghum bicolor (L.) Moench.] seedlings. Pak J Bot 45:1597–1604

    CAS  Google Scholar 

  • Abbas G, Murtaza B, Bibi I, Shahid M, Niazi NK, Khan MI, Amjad M, Hussain M, Natasha (2018) Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. Int J Environ Res Public Health 15(1):59

    Article  CAS  Google Scholar 

  • Abd-Allah EF, Abeer H, Alqarawi AA (2016) Mitigation of cadmium induced stress in tomato (Solanum lycopersicum L.) by selenium. Pak J Bot 48:953–961

    Google Scholar 

  • Aborode FA, Raab A, Voigt M, Costa LM, Krupp EM, Feldmann J (2016) The importance of glutathione and phytochelatins on the selenite and arsenate detoxification in Arabidopsis thaliana. J Environ Sci 49:150–161

    Article  CAS  Google Scholar 

  • Afton SE, Caruso JA (2009) The effect of Se antagonism on the metabolic fate of Hg in Allium fistulosum. J Anal At Spectrom 24:759–766

    Article  CAS  Google Scholar 

  • Alfanie I, Muhyi R, Suhartono E (2015) Effect of heavy metal on malondialdehyde and advanced oxidation protein products concentration: a focus on arsenic, cadmium, and mercury. J Medical Bioengineering 4(1)

  • Alia A, Mohanty P, Matysik J (2001) Effect of proline on the production of singlet oxygen. Amino Acids 21:195–200

    Article  CAS  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  Google Scholar 

  • Alyemeni MN, Ahanger MA, Wijaya L, Alam P, Bhardwaj R, Ahmad P (2018) Selenium mitigates cadmium-induced oxidative stress in tomato (Solanum lycopersicum L.) plants by modulating chlorophyll fluorescence, osmolyte accumulation, and antioxidant system. Protoplasma 255:985–986

    Article  Google Scholar 

  • Angelé-Martínez C, Nguyen KVT, Ameer FS, Anker JN, Brumaghim JL (2017) Reactive oxygen species generation by copper (II) oxide nanoparticles determined by DNA damage assays and EPR spectroscopy. Nanotoxicology 11:278–288

    Article  CAS  Google Scholar 

  • Ansari MKA, Ahmad A, Umar S, Iqbal M (2009) Mercury-induced changes in growth variables and antioxidative enzyme activities in Indian mustard. J Plant Interact 4:131–136

    Article  CAS  Google Scholar 

  • Aravind P, Prasad MNV (2005) Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism. Plant Physiol Biochem 43:107–116

    Article  CAS  Google Scholar 

  • Asgher M, Per TS, Anjum S, Khan MIR, Masood A, Verma S, Khan NA, Asgher M, Per TS, Anjum S, Khan MIR, Masood A, Verma S, Khan NA (2017) Contribution of glutathione in heavy metal stress tolerance in plants. Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress Springer 297–313.

  • Aslam M, Saeed MS, Sattar S, Sajad S, Sajjad M, Adnan M, Iqbal M, Sharif MT (2017) Specific role of proline against heavy metals toxicity in plants. Int J Pure App Biosci 5:27–34

    Article  Google Scholar 

  • ATSDR (2017) Substance priority list agency for toxic substances and disease registry

  • Azevedo R, Rodriguez E (2012) Phytotoxicity of mercury in plants: a review. Aust J Bot 2012:1–6

    Google Scholar 

  • Baek S, Han T, Ahn SK, Kang H, Cho MR, Lee SC, Im KH (2012) Effects of heavy metals on plant growths and pigment contents in Arabidopsis thaliana. Plant Pathol J 28(4):446–452

    Article  CAS  Google Scholar 

  • Barnett MO, Harris LA, Turner RR, Stevenson RJ, Henson TJ, Melton RC, Hoffman DP (1997) Formation of mercuric sulfide in soil. Environ Sci Technol 31:3037–3043

    Article  CAS  Google Scholar 

  • Beauvais-Flück R, Slaveykova VI, Cosio C (2018) Molecular effects of inorganic and methyl mercury in aquatic primary producers: comparing impact to a macrophyte and a green microalga in controlled conditions. Geosciences 8:393

    Article  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    Article  CAS  Google Scholar 

  • Björnberg A, Håkanson L, Lundbergh K (1988) A theory on the mechanisms regulating the bioavailability of mercury in natural waters. Environ Pollut 49:53–61

    Article  Google Scholar 

  • Blazka ME, Shaikh ZA (1992) Cadmium and mercury accumulation in rat hepatocytes: interactions with other metal ions. Toxicol Appl Pharmacol 113:118–125

    Article  CAS  Google Scholar 

  • Bluemlein K, Klimm E, Raab A, Feldmann J (2009) Selenite enhances arsenate toxicity in Thunbergia alata. Environ Chem 6:486–494

    Article  CAS  Google Scholar 

  • Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351

    Article  CAS  Google Scholar 

  • Boszke L, Glosinska G, Siepak J (2002) Some aspects of speciation of mercury in a water environment. Pol J Environ Stud 11(4):285–298

    CAS  Google Scholar 

  • Boszke L, Kowalski A, Szczuciński W, Rachlewicz G, Lorenc S, Siepak J (2006) Assessment of mercury mobility and bioavailability by fractionation method in sediments from coastal zone inundated by the 26 December 2004 tsunami in Thailand. Environ Geol 51:527–536

    Article  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  CAS  Google Scholar 

  • Cabrita MT, Duarte B, Cesário R, Mendes R, Hintelmann H, Eckey K, Dimock B, Cacador I, Canario J (2019) Mercury mobility and effects in the salt-marsh plant Halimione portulacoides: uptake, transport, and toxicity and tolerance mechanisms. Sci Total Environ 650:111–120

    Article  CAS  Google Scholar 

  • Carrasco-Gil S, Alvarez-Fernandez A, Sobrino-Plata J, Millan R, Carpena-Ruiz RO, Leduc DL, Andrews JC, Abadia J, Hernandez LE (2011) Complexation of Hg with phytochelatins is important for plant Hg tolerance. Plant Cell Environ 34:778–791

    Article  CAS  Google Scholar 

  • Cenkci S, Yildiz M, Cigerci IH, Konuk M, Bozdag A (2009) Toxic chemicals-induced genotoxicity detected by random amplified polymorphic DNA (RAPD) in bean (Phaseolus vulgaris L.) seedlings. Chemosphere 76:900–906

    Article  CAS  Google Scholar 

  • Chandrakar V, Naithani SC, Keshavkant S (2016) Arsenic-induced metabolic disturbances and their mitigation mechanisms in crop plants: a review. Biologia 71:367–377

    Article  CAS  Google Scholar 

  • Chang H, Zhou XB, Wang WH, Zhou YX, Dai WC, Zhang CM, Yu SH (2013) Effects of selenium application in soil on formation of iron plaque outside roots and cadmium uptake by rice plants. Adv Mater Res 750–752:1573–1576

    Article  CAS  Google Scholar 

  • Chen Z, Gallie DR (2004) The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell 16:1143–1162

    Article  CAS  Google Scholar 

  • Chen J, Yang ZM (2012) Mercury toxicity, molecular response and tolerance in higher plants. Biometals 25:847–857

    Article  CAS  Google Scholar 

  • Chen TF, Zheng WJ, Luo Y, Yang F, Bai Y, Tu F (2005) Effects of selenium stress on photosynthetic pigment contents and growth of Chlorella vulgaris. J Plant Physiol Mol Biol 31:369–373

    CAS  Google Scholar 

  • Chen CY, Driscoll CT, Lambert KF, Mason RP, Rardin LR, Schmitt CV, Serrell NS, Sunderland EM (2012a) Sources to seafood: mercury pollution in the marine environment. Maine Sea Grant Publications 64

  • Chen YA, Chi WC, Huang TL, Lin CY, Nguyen TTQ, Hsiung YC, Chia LC, Huang HJ (2012b) Mercury-induced biochemical and proteomic changes in rice roots. Plant Physiol Biochem 55:23–32

    Article  CAS  Google Scholar 

  • Cheng H, Wang M, Wong MH, Ye ZH (2014) Does radial oxygen loss and iron plaque formation on roots alter Cd and Pb uptake and distribution in rice plant tissues? Plant Soil 375:137–148

    Article  CAS  Google Scholar 

  • Cheng B, Lian HF, Liu YY, Yu XH, Sun YL, Sun XD, Shi QH, Liu SQ (2016) Effects of selenium and sulfur on antioxidants and physiological parameters of garlic plants during senescence. J Integr Agric 15(3):566–572

    Article  CAS  Google Scholar 

  • Chiasson-Gould SA, Blais JM, Poulain AJ (2014) Dissolved organic matter kinetically controls mercury bioavailability to bacteria. Environ Sci Technol 48:3153–3161

    Article  CAS  Google Scholar 

  • Cho UH, Park JO (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156:1–9

    Article  CAS  Google Scholar 

  • Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36:609–662

    Article  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  CAS  Google Scholar 

  • Clemens S (2013) Mercury in plants. Mercury exacerbation of alzheimer’s disease

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  CAS  Google Scholar 

  • Covelli S, Acquavita A, Piani R, Predonzani S, De Vittor C (2009) Recent contamination of mercury in an estuarine environment (Marano lagoon, Northern Adriatic, Italy). Estuar Coast Shelf S 82:273–284

    Article  CAS  Google Scholar 

  • Cui SY, Jin H, Kim SJ, Kumar AP, Lee YI (2008) Interaction of glutathione and sodium selenite in vitro investigated by electrospray ionization tandem mass spectrometry. J Biochem 143:685–693

    Article  CAS  Google Scholar 

  • Cui WT, Fang P, Zhu KK, Mao Y, Gao CY, Xie YJ, Wang J, Shen WB (2014) Hydrogen-rich water confers plant tolerance to mercury toxicity in alfalfa seedlings. Ecotoxicol Environ Saf 105:103–111

    Article  CAS  Google Scholar 

  • Dang F, Li ZZ, Zhong H (2019) Methylmercury and selenium interactions: mechanisms and implications for soil remediation. Crit Rev Environ Sci Technol 49(19):1737–1768

    Article  CAS  Google Scholar 

  • de la Luz MM, Pinilla L, Rosas A, Cartes P (2008) Selenium uptake and its influence on the antioxidative system of white clover as affected by lime and phosphorus fertilization. Plant Soil 303:139–149

    Article  CAS  Google Scholar 

  • de Souza MP, Pilonsmits EA, Lytle CM, Hwang S, Tai J, Honma TS, Yeh L, Terry N (1998) Rate-limiting steps in selenium assimilation and volatilization by indian mustard. Plant Physiol 117(4):1487–1494

    Article  Google Scholar 

  • Dinakar N, Nagajyothi PC, Suresh S, Udaykiran Y, Damodharam T (2008) Phytotoxicity of cadmium on protein, proline and antioxidant enzyme activities in growing Arachis hypogaea L. seedlings. J Environ Sci 20:199–206

    Article  CAS  Google Scholar 

  • Ding YZ, Feng RW, Wang RG, Guo JK, Zheng XQ (2014) A dual effect of Se on Cd toxicity: evidence from plant growth, root morphology and responses of the antioxidative systems of paddy rice. Plant Soil 375:289–301

    Article  CAS  Google Scholar 

  • Ding W, Zhang J, Wu SC, Zhang S, Christie P, Liang P (2019) Responses of the grass Paspalum distichum L. to Hg stress: a proteomic study. Ecotoxicol Environ Saf 183:109549

    Article  CAS  Google Scholar 

  • Ellis DR, Salt DE (2003) Plants, selenium and human health. Curr Opin Plant Biol 6:273–279

    Article  CAS  Google Scholar 

  • Feng RW, Wei CY, Tu SX, Wu FC (2009) Effects of Se on the uptake of essential elements in Pteris vittata L. Plant Soil 325:123–132

    Article  CAS  Google Scholar 

  • Feng RW, Wei CY, Tu SX (2013a) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68

    Article  CAS  Google Scholar 

  • Feng RW, Wei CY, Tu SX, Ding YZ, Song ZG (2013b) A dual role of Se on Cd toxicity: evidences from the uptake of Cd and some essential elements and the growth responses in paddy rice. Biol Trace Elem Res 151:113–121

    Article  CAS  Google Scholar 

  • Fernandez-Martinez R, Loredo J, Ordonez A, Rucandio MI (2005) Distribution and mobility of mercury in soils from an old mining area in Mieres, Asturias (Spain). Sci Total Environ 346:200–212

    Article  CAS  Google Scholar 

  • Fernandez-Martinez R, Larios R, Gomez-Pinilla I, Gomez-Mancebo B, Lopez-Andres S, Loredo J, Ordonez A, Rucandio I (2015) Mercury accumulation and speciation in plants and soils from abandoned cinnabar mines. Geoderma 253:30–38

    Article  CAS  Google Scholar 

  • Fracasso ME, Perbellini L, Soldà S, Talamini G, Franceschetti P (2002) Lead induced DNA strand breaks in lymphocytes of exposed workers: role of reactive oxygen species and protein kinase C. Mutat. Res./Genet. Toxicol Environ Mutagen 515:159–169

    Article  CAS  Google Scholar 

  • Freeman JL, Tamaoki M, Stushnoff C, Quinn CF, Cappa JJ, Devonshire J, Fakra SC, Marcus MA, McGrath SP, Hoewyk DV, Pilon-Smits EAH (2010) Molecular mechanisms of selenium tolerance and hyperaccumulation in Stanleya pinnata. Plant Physiol 153(4):1630–1652

    Article  CAS  Google Scholar 

  • Frohne T, Rinklebe J, Langer U, Du Laing G, Mothes S, Wennrich R (2012) Biogeochemical factors affecting mercury methylation rate in two contaminated floodplain soils. Biogeosciences 9:493–507

    Article  CAS  Google Scholar 

  • Fu YQ, Yang XJ, Shen H (2018) Root iron plaque alleviates cadmium toxicity to rice (Oryza sativa) seedlings. Ecotoxicol Environ Saf 161:534–541

    Article  CAS  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Lannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    Article  CAS  Google Scholar 

  • Geng N, Wu YC, Zhang M, Tsang DCW, Rinklebe J, Xia YF, Lu DB, Zhu LF, Palansooriya KN, Kim K, Ok YS (2019) Bioaccumulation of potentially toxic elements by submerged plants and biofilms: A critical review. Environ Int 131:105015

    Article  CAS  Google Scholar 

  • Gratao PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  CAS  Google Scholar 

  • Gray JE, Theodorakos PM, Fey DL, Krabbenhoft DP (2015) Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region. Environ Geochem Health 37:35–48

    Article  CAS  Google Scholar 

  • Hale KL, McGrath SP, Lombi E, Stack SM, Terry N, Pickering IJ, George GN, Pilon-Smits EAH (2001) Molybdenum sequestration in Brassica species. A role for anthocyanins? Plant Physiol 126:1391–1402

    Article  CAS  Google Scholar 

  • Han FX, Banin A (2000) Long-term transformations of cadmium, cobalt, copper, nickel, zinc, vanadium, manganese, and iron in arid-zone soils under saturated condition. Commun Soil Sci Plan 31:943–957

    Article  CAS  Google Scholar 

  • Han Y, Kingston HM, Boylan HM, Rahman GMM, Shah S, Richter RC, Link DD, Bhandari S (2003) Speciation of mercury in soil and sediment by selective solvent and acid extraction. Anal Bioanal Chem 375:428–436

    Article  CAS  Google Scholar 

  • Han RM, Zhang JP, Skibsted LH (2012) Reaction dynamics of flavonoids and carotenoids as antioxidants. Molecules 17:2140–2160

    Article  CAS  Google Scholar 

  • Han D, Li XH, Xiong SL, Tu SX, Chen ZG, Li JP, Xie ZJ (2013) Selenium uptake, speciation and stressed response of Nicotiana tabacum L. Environ Exp Bot 95:6–14

    Article  CAS  Google Scholar 

  • Han D, Xiong SL, Tu SX, Liu JC, Chen C (2015) Interactive effects of selenium and arsenic on growth, antioxidant system, arsenic and selenium species of Nicotiana tabacum L. Environ Exp Bot 117:12–19

    Article  CAS  Google Scholar 

  • Hartikainen H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol 18(4):309–318

    Article  CAS  Google Scholar 

  • Hartikainen H, Xue TL, Piironen V (2000) Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant Soil 225:193–200

    Article  CAS  Google Scholar 

  • Hawrylak-Nowak B (2008) Effect of selenium on selected macronutrients in maize plants. J Elem 13:513–519

    Google Scholar 

  • Hawrylak-Nowak B, Dresler S, Wojcik M (2014) Selenium affects physiological parameters and phytochelatins accumulation in cucumber (Cucumis sativus L.) plants grown under cadmium exposure. Sci Hortic 172:10–18

    Article  CAS  Google Scholar 

  • Hernandez LE, Sobrino-Plata J, Montero-Palmero MB, Carrasco-Gil S, Flores-Cáceres ML, OrtegabVillasante C, Escobar C (2015) Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress. J Exp Bot 66:2901–2911

    Article  CAS  Google Scholar 

  • Hossain MA, Hasanuzzaman M, Fujita M (2010) Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiol Mol Biol Plants 16:259–272

    Article  CAS  Google Scholar 

  • Hu Y, Duan GL, Huang YZ, Liu YX, Sun GX (2014) Interactive effects of different inorganic As and Se species on their uptake and translocation by rice (Oryza sativa L.) seedlings. Environ Sci Pollut R 21:3955–3962

    Article  CAS  Google Scholar 

  • Huang GX, Ding CF, Guo FY, Li XG, Zhang TL, Wang XX (2017) Underlying mechanisms and effects of hydrated lime and selenium application on cadmium uptake by rice (Oryza sativa L.) seedlings. Environ Sci Pollut Res 24:18926–18935

    Article  CAS  Google Scholar 

  • Huang QQ, Xu YM, Liu YY, Qin X, Huang R, Liang XF (2018) Selenium application alters soil cadmium bioavailability and reduces its accumulation in rice grown in Cd-contaminated soil. Environ Sci Pollut Res 25:31175–31182

    Article  CAS  Google Scholar 

  • Huang QQ, Liu YY, Qin X, Zhao LJ, Liang XF, Xu YM (2019) Selenite mitigates cadmium-induced oxidative stress and affects Cd uptake in rice seedlings under different water management systems. Ecotoxicol Environ Saf 168:486–494

    Article  CAS  Google Scholar 

  • Israr M, Sahi S (2006) Antioxidative responses to mercury in the cell cultures of Sesbania drummondii. Plant Physiol Biochem 44(10):590–595

    Article  CAS  Google Scholar 

  • Israr M, Sahi S, Datta R, Sarkar D (2006) Bioaccumulation and physiological effects of mercury in Sesbania drummondii. Chemosphere 65:591–598

    Article  CAS  Google Scholar 

  • Issaro N, Abi-Ghanem C, Bermond A (2009) Fractionation studies of mercury in soils and sediments: a review of the chemical reagents used for mercury extraction. Anal Chim Acta 631:1–12

    Article  CAS  Google Scholar 

  • Jia Y, Bao P, Zhu YG (2015) Arsenic bioavailability to rice plant in paddy soil: influence of microbial sulfate reduction. J Soils Sediments 15:1960–1967

    Article  CAS  Google Scholar 

  • Jonsson S, Skyllberg U, Nilsson MB, Westlund PO, Shchukarev A, Lundberg E, Björn E (2012) Mercury methylation rates for geochemically relevant HgII species in sediments. Environ Sci Technol 46:11653–11659

    Article  CAS  Google Scholar 

  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13:3145–3175

    Article  CAS  Google Scholar 

  • Kerin EJ, Gilmour CC, Roden E, Suzuki MT, Coates JD, Mason RP (2006) Mercury methylation by dissimilatory iron-reducing bacteria. Appl Environ Microbiol 72:7919–7921

    Article  CAS  Google Scholar 

  • Khaliq A, Aslam F, Matloob A, Hussain S, Geng M, Wahid A, Rehman HU (2015) Seed priming with selenium: consequences for emergence, seedling growth, and biochemical attributes of rice. Biol Trace Elem Res 166:236–244

    Article  CAS  Google Scholar 

  • Khan MAK, Wang F (2009) Mercury-selenium compounds and their toxicological signifificance: toward a molecular understanding of the mercury-selenium antagonism. Environ Toxicol Chem 28(8):1567–1577

    Article  CAS  Google Scholar 

  • Khan MAK, Wang F (2010) Chemical demethylation of methylmercury by selenamino acids. Chem Res Toxicol 23(7):1202–1206

    Article  CAS  Google Scholar 

  • Kocman D, Horvat M, Kotnik J (2004) Mercury fractionation in contaminated soils from the Idrija mercury mine region. J Environ Monit 6(8):696–703

    Article  CAS  Google Scholar 

  • Kocman D, Horvat M, Pirrone N, Cinnirella S (2013) Contribution of contaminated sites to the global mercury budget. Environ Res 125:160–170

    Article  CAS  Google Scholar 

  • Kolbert Z, Lehotai N, Molnár Á, Feigl G (2016) “The roots” of selenium toxicity: a new concept. Plant Signal Behav 11:1241935

    Article  CAS  Google Scholar 

  • Kováčik J, Rotková G, Bujdoš M, Babula P, Peterková V, Matúš P (2017) Ascorbic acid protects Coccomyxa subellipsoidea against metal toxicity through modulation of ROS/NO balance and metal uptake. J Hazard Mater 339:200–207

    Article  CAS  Google Scholar 

  • Krishna Sahu G, Upadhyay S, Bhusan Sahoo B (2012) Mercury induced phytotoxicity and oxidative stress in wheat (Triticum aestivum L.) plants. Physiol Mol Biol Plants 18(1):21–31

    Article  CAS  Google Scholar 

  • Krupp EM, Mestrot A, Wielgus J, Meharg AA, Feldman J (2009) The molecular form of mercury in biota: identifification of novel mercury peptide complexes in plants. Chem Commun 2009:4257–4259

    Article  CAS  Google Scholar 

  • Kültz D (2005) Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 67:225–257

    Article  CAS  Google Scholar 

  • Kumar M, Bijo AJ, Baghel RS, Reddy CRK, Jha B (2012) Selenium and spermine alleviates cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidant system and DNA methylation. Plant Physiol Biochem 51:129–138

    Article  CAS  Google Scholar 

  • Laurier F, Cossa D, Gonzalez JL, Breviere E, Sarazin G (2003) Mercury trans formations and exchanges in a high turbidity estuary: the role of organic matter and amorphous oxyhydroxides. Geochem Cosmochim Acta 67(18):3329–3345

    Article  CAS  Google Scholar 

  • Li YH, Yang LS, Ji YF, Sun HF, Wang WY (2009) Quantification and fractionation of mercury in soils from the Chatian mercury mining deposit, southwestern China. Environ Geochem Health 31:617–628

    Article  CAS  Google Scholar 

  • Li Z, Keasling JD, Niyogi KK (2012) Overlapping photoprotective function of vitamin E and carotenoids in Chlamydomonas. Plant Physiol 158:313–323

    Article  CAS  Google Scholar 

  • Li DB, Cheng YY, Wu C, Li WW, Li N, Yang ZC, Tong ZH, Yu HQ (2014a) Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm. Sci Rep 4.

  • Li Y, Zhao J, Gao Y, Li Y, Li B, Zhao Y, Chai Z (2014b) Effects of iron plaque and selenium on the absorption and translocation of inorganic mercury and methylmercury in rice (Oryza sativa L.). Asian J Ecotoxicol 9(5):972–977

    CAS  Google Scholar 

  • Li YF, Zhao JT, Li YY, Li HJ, Zhang JF, Li B, Gao YX, Chen CY, Luo MY, Huang R, Li J (2015) The concentration of selenium matters: a field study on mercury accumulation in rice by selenite treatment in qingzhen, Guizhou, China. Plant Soil 391:195–205

    Article  CAS  Google Scholar 

  • Li YY, Zhao JT, Li YF, Xu XH, Zhang BW, Liu YJ, Cui LW, Li B, Gao YX, Chai ZF (2016) Comparative metalloproteomic approaches for the investigation proteins involved in the toxicity of inorganic and organic forms of mercury in rice (Oryza sativa L.) roots. Metallomics 8(7):663–671

    Article  CAS  Google Scholar 

  • Li YY, Li H, Li YF, Zhao JT, Guo JX, Wang R, Li B, Zhang ZY, Gao YX (2018) Evidence for molecular antagonistic mechanism between mercury and selenium in rice (Oryza sativa L.): a combined study using 1, 2-dimensional electrophoresis and SR-XRF techniques. J Trace Elem Med Biol 50:435–440

    Article  CAS  Google Scholar 

  • Li YY, Hua WJ, Zhao JT, Chen CM, Wang W, Li B, Li YF (2019) Selenium decreases methylmercury and increases nutritional elements in rice growing in mercury-contaminated farmland. Ecotox Environ Safe 182:109447

    Article  CAS  Google Scholar 

  • Lin L, Zhou WH, Dai HX, Cao FB, Zhang GP, Wu FB (2012) Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. J Hazard Mater 235:343–351

    Article  CAS  Google Scholar 

  • Liu WX, Shang SH, Feng X, Zhang GP, Wu FB (2015) Modulation of exogenous selenium in cadmium-induced changes in antioxidative metabolism, cadmium uptake, and photosynthetic performance in the 2 tobacco genotypes differing in cadmium tolerance. Environ Toxicol Chem 34:92–99

    Article  CAS  Google Scholar 

  • Makino T, Takano H, Kamiya T, Itou T, Sekiya N, Inahara M, Sakurai Y (2008) Restoration of cadmium-contaminated paddy soils by washing with ferric chloride: Cd extraction mechanism and bench-scale verification. Chemosphere 70:1035–1043

    Article  CAS  Google Scholar 

  • Malik JA, Goel S, Kaur N, Sharma S, Singh I, Nayyar H (2012) Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environ Exp Bot 77:242–248

    Article  CAS  Google Scholar 

  • Martin AJ, Simpson S, Fawcett S, Wiramanaden CIE, Pickering IJ, Belzile N, Chen YW, London J, Wallschlager D (2011) Biogeochemical mechanisms of selenium exchange between water and sediments in two contrasting lentic environments. Environ Sci Technol 45:2605–2612

    Article  CAS  Google Scholar 

  • Martínez-Trinidad S, Hernández Silva G, Martínez Reyes J, Solorio Munguía G, Solís Valdez S, Ramírez Islas ME, García Martínez R (2013) Total mercury in terrestrial systems (air-soil-plant-water) at the mining region of San Joaquín, Queretaro, Mexico. Geofis Int 52:43–58

    Google Scholar 

  • Matysik J, Alia BB, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82(5):525–532

    CAS  Google Scholar 

  • McNear DH, Afton SE, Caruso JA (2012) Exploring the structural basis for selenium/mercury antagonism in Allium fistulosum. Metallomics 4:267–276

    Article  CAS  Google Scholar 

  • Meng B, Feng XB, Qiu GL, Anderson CWN, Wang JX, Zhao L (2014) Localization and speciation of mercury in brown rice with implications for Pan-Asian public health. Environ Sci Technol 48:7974–7981

    Article  CAS  Google Scholar 

  • Meunier L, Koch I, Reimer KJ (2011) Effect of particle size on arsenic bioaccessibility in gold mine tailings of Nova Scotia. Sci Total Environ 409:2233–2243

    Article  CAS  Google Scholar 

  • Meyer CJ, Jame L, Seago JL Jr, Peterson C (2009) Environmental effects on the maturation of the endodermis and multiseriate exodermis of Iris germanica roots. Ann Bot London 103(5):687–702

    Article  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi R, Govindarajan R, Kuriakose S, Prasad M (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44:25–37

    Article  CAS  Google Scholar 

  • Mishra S, Jha AB, Dubey RS (2011) Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248:565–577

    Article  CAS  Google Scholar 

  • Montesbayon M, Leduc DL, Terry N, Caruso JA (2002) Selenium speciation in wild-type and genetically modified Se accumulating plants with HPLC separation and ICP-MS/ES-MS detection. J Anal Atom Spectrom 17:872–879

    Article  CAS  Google Scholar 

  • Moreno-Jimenez E, Esteban E, Carpena-Ruiz RO, Penalosa JM (2009) Arsenic- and mercury-induced phytotoxicity in the Mediterranean shrubs Pistacia lentiscus and Tamarix gallica grown in hydroponic culture. Ecotoxicol Environ Saf 72:1781–1789

    Article  CAS  Google Scholar 

  • Moulick D, Ghosh D, Santra SC (2016) Evaluation of effectiveness of seed priming with selenium in rice during germination under arsenic stress. Plant Physiol Biochem 109:571–578

    Article  CAS  Google Scholar 

  • Mounicou S, Shah M, Meija J, Caruso JA, Vonderheide AP, Shann J (2006) Localization and speciation of selenium and mercury in Brassica juncea-implications for Se-Hg antagonism. J Anal At Spectrom 21:404–412

    Article  CAS  Google Scholar 

  • Mozafariyan M, Shekari L, Hawrylak-Nowak B, Kamelmanesh MM (2014) Protective role of selenium on pepper exposed to cadmium stress during reproductive stage. Biol Trace Elem Res 160:97–107

    Article  CAS  Google Scholar 

  • Mroczek-Zdyrska M, Wójcik M (2011) The influence of selenium on root growth and oxidative stress induced by lead in Vicia faba L. minor plants. Biol Trace Elem Res 147:320–328

    Article  CAS  Google Scholar 

  • Mukherjee A, Sharma A (1988) Effects of cadmium and selenium on cell division and chromosomal aberrations in Allium sativum L. Water Air Soil Pollut 37:433–438

    Article  CAS  Google Scholar 

  • Munné-Bosch S, Alegre L (2002) The function of tocopherols and tocotrienols in plants. Crit Rev Plant Sci 21(1):31–57

    Article  Google Scholar 

  • Murase J, Kimura M (1997) Anaerobic reoxidation of Mn2+, Fe2+, S0 and S2- in submerged paddy soils. Biol Fertil Soils 25:302–306

    Article  CAS  Google Scholar 

  • Nakamaru YM, Altansuvd J (2014) Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: a review. Chemosphere 111:366–371

    Article  CAS  Google Scholar 

  • Narang U, Bhardwaj R, Thukral A, Gard S (2008) Mercury-induced lipid peroxidation and changes in antioxidants in Eichhornia crassipes (Mart.) Solms. Plant Stress 2(1):70–74

    Google Scholar 

  • Natasha SM, Niazi NK, Khalid S, Murtaza B, Bibi I (2018) A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ Pollut 234:915–934

    Article  CAS  Google Scholar 

  • Navarro-Alarcon M, Cabrera-Vique C (2008) Selenium in food and the human body: a review. Sci Total Environ 400:115–141

    Article  CAS  Google Scholar 

  • Neill SO, Gould KS, Kilmartin PA, Mitchell KA, Markham KR (2002) Antioxidant activities of red versus green leaves in Elatostema rugosum. Plant Cell Environ 25:539–547

    Article  CAS  Google Scholar 

  • Obrist D, Kirk JL, Zhang L, Sunderland EM, Jiskra M, Selin NE (2018) A review of global environmental mercury processes in response to human and natural perturbations: changes of emissions, climate, and land use. Ambio 47(2):116–140

    Article  CAS  Google Scholar 

  • Ohkawa J, Okada N, Shinmyo A, Takno M (1989) Primary structure of cucumber (Cucumis sativus) ascorbate oxidase deduced from cDNA sequence: homology with blue copper proteins and tissue-specific expression. Proc Natl Acad Sci USA 86:1239–1243

    Article  CAS  Google Scholar 

  • Ortega-Villasante C, Rellan-Alvarez R, Del Campo FF, Carpena-Ruiz RO, Hernandez LE (2005) Cellular damage induced by cadmium and mercury in Medicago sativa. J Exp Bot 56:2239–2251

    Article  CAS  Google Scholar 

  • Pandey C, Gupta M (2015) Selenium and auxin mitigates arsenic stress in rice (Oryza sativa L.) by combining the role of stress indicators, modulators and genotoxicity assay. J Hazard Mater 287:384–391

    Article  CAS  Google Scholar 

  • Pařízek J, Oštádalová I (1967) The protective effect of small amounts of selenite in sublimate intoxication. Experiential 23(2):142–143

    Article  Google Scholar 

  • Park J, Song WY, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69:278–288

    Article  CAS  Google Scholar 

  • Parra R, Pastor MT, Perez-Paya E, Amo-Marco JB (2001) Effect of in vitro shoot multiplication and somatic embryogenesis on 5-methylcytosine content in DNA of Myrtus communis L. Plant Growth Regul 33:131–136

    Article  CAS  Google Scholar 

  • Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66:379–422

    Article  Google Scholar 

  • Patra M, Bhowmik N, Bandopadhyay B, Sharma A (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot 52:199–223

    Article  CAS  Google Scholar 

  • Patty C, Barnett B, Mooney B, Kahn A, Levy S, Liu Y, Pianetta P, Andrews JC (2009) Using X-ray microscopy and Hg L3 XANES to study Hg binding in the rhizosphere of spartina cordgrass. Environ Sci Technol 43:7397–7402

    Article  CAS  Google Scholar 

  • Pavlikova D, Pavlik M, Staszkova L, Tlustos P, Szakova J, Balik J (2007) The effect of potentially toxic elements and sewage sludge on the activity of regulatory enzyme glutamate kinase. Plant Soil Environ 53:201–206

    Article  CAS  Google Scholar 

  • Pawlik-Skowronska B, Pirszel J, Brown MT (2007) Concentrations of phytochelatins and glutathione found in natural assemblages of seaweeds depend on species and metal concentrations of the habitat. Aquat Toxicol 83:190–199

    Article  CAS  Google Scholar 

  • Pedrero Z, Madrid Y, Hartikainen H, Camara C (2008) Protective effect of selenium in broccoli (Brassica oleracea) plants subjected to cadmium exposure. J Agric Food Chem 56:266–271

    Article  CAS  Google Scholar 

  • Plant JA, Kinniburgh DG, Smedley PL, Fordyce FM, Klinck BA (2003) Arsenic and selenium. In: Treatise on geochemistry. Elsevier, London, UK, pp 17–66

    Chapter  Google Scholar 

  • Powell KJ, Brown PL, Byrne RH, Gajda T, Hefter G, Sjöberg S, Wanner H (2004) Chemical speciation of Hg(II) with environmental inorganic ligands. Aust J Chem 57:993–1000

    Article  CAS  Google Scholar 

  • Qiu R, Zhang JF, Dong ZQ, Feng H, Lai L (2014) Low-temperature thermal desorption of farmland soil contaminated by mercury. Environ Sci Technol 37:48–52 (in Chinese)

    CAS  Google Scholar 

  • Qu D, Zhang YP, Schnell S, Conrad R (2003) Reduction of iron oxides and its effect on microbial processes in anaerobic paddy soil. Acta Pedol Sin 40:858–863 (in Chinese)

    CAS  Google Scholar 

  • Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241

    Article  CAS  Google Scholar 

  • Rayner-Canham G, Overton T (2010) Descriptive inorganic chemistry, 5th edn. W.H. Freeman and Company, New York

    Google Scholar 

  • Reis AT, Rodrigues SM, Davidson CM, Pereira E, Duarte AC (2010) Extractability and mobility of mercury from agricultural soils surrounding industrial and mining contaminated areas. Chemosphere 81(11):1369–1377

    Article  CAS  Google Scholar 

  • Ren JH, Sun HH, Wang SF, Luo J, Ma LNQ (2014) Interactive effects of mercury and arsenic on their uptake, speciation and toxicity in rice seedling. Chemosphere 117:737–744

    Article  CAS  Google Scholar 

  • Rothenberg SE, Feng X (2012) Mercury cycling in a flflooded rice paddy. J Geophys Res 117(G03003)

  • Rothenberg SE, Windham-Myers L, Creswell JE (2014) Rice methylmercury exposure and mitigation: a comprehensive review. Environ Res 133:407–423

    Article  CAS  Google Scholar 

  • Ruiz ON, Daniell H (2009) Genetic engineering to enhance mercury phytoremediation. Curr Opin Biotechnol 20:213–219

    Article  CAS  Google Scholar 

  • Saffaryazdi A, Lahouti M, Ganjeali A, Bayat H (2012) Impact of selenium supplementation on growth and selenium accumulation on spinach (Spinacia oleracea L.) plants. Not Sci Biol 4:95–100

    Article  CAS  Google Scholar 

  • Sallmyr A, Fan J, Rassool FV (2008) Genomic instability in myeloid malignancies: increased reactive oxygen species (ROS), DNA double strand breaks (DSBs) and error-prone repair. Cancer Lett 270:1–9

    Article  CAS  Google Scholar 

  • Sas-Nowosielska A, Galimska-Stypa R, Kucharski R, Zielonka U, Malkowski E, Gray L (2008) Remediation aspect of microbial changes of plant rhizosphere in mercury contaminated soil. Environ Monit Assess 137:101–109

    Article  CAS  Google Scholar 

  • Saunders JR, Knopper LD, Koch I, Reimer KJ (2010) Arsenic transformations and biomarkers in meadow voles (Microtus pennsylvanicus) living on an abandoned gold mine site in Montague, Nova Scotia, Canada. Sci Total Environ 408:829–835

    Article  CAS  Google Scholar 

  • Sebastian A, Prasad MN (2016) Iron plaque decreases cadmium accumulation in Oryza sativa L. and serves as a source of iron. Plant Biol 18:1008–1015

    Article  CAS  Google Scholar 

  • Shahid M, Ferrand E, Schreck E, Dumat C (2013) Behavior and impact of zirconium in the soil–plant system: plant uptake and phytotoxicity. Rev Environ Contam Toxicol 221:107–127

    CAS  Google Scholar 

  • Shahid M, Dumat C, Pourrut B, Silvestre J, Laplanche C, Pinelli E (2014a) Influence of EDTA and citric acid on lead-induced oxidative stress to Vicia faba roots. J Soils Sediments 14:835–843

    Article  CAS  Google Scholar 

  • Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E (2014b) Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev Environ Contam Toxicol 232:1–44

    CAS  Google Scholar 

  • Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK (2017) Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater 325:36–58

    Article  CAS  Google Scholar 

  • Shanker K, Mishra S, Srivastava S, Srivastava R, Dass S, Prakash S, Srivastava MM (1995) Effect of selenite and selenate on plant uptake of cadmium by kidney bean with reference to Cd-Se interaction. Chem Speciat Bioavailab 7:97–100

    Article  CAS  Google Scholar 

  • Shanker K, Mishra S, Srivastava S, Srivastava R, Daas S, Prakash S, Srivastava MM (1996a) Effect of selenite and selenate on plant uptake and translocation of mercury by tomato (Lycopersicum esculentum). Plant Soil 183:233–238

    Article  CAS  Google Scholar 

  • Shanker K, Mishra S, Srivastava S, Srivastava R, Dass S, Prakash S, Srivastava MM (1996b) Study of mercury-selenium (Hg-Se) interactions and their impact on Hg uptake by the radish (Raphanus sativus) plant. Food Chem Toxicol 34:883–886

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  CAS  Google Scholar 

  • Sharma A, Talukder G, Sharma A (1990) Advances in cell and chromosome research. Aspect Publications Ltd, West Yorkshire, pp 197–213

    Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Aust J Bot 2012:1–26

    Google Scholar 

  • Sharma SS, Dietz KJ, Mimura T (2016) Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant Cell Environ 39:1112–1126

    Article  CAS  Google Scholar 

  • Sheng Zhou Z, Guo K, Elbaz A, Yang ZM (2009) Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environ Exp Bot 65:27–34

    Article  CAS  Google Scholar 

  • Shiyab S, Chen J, Han FXX, Monts DL, Matta FB, Gu MM, Su Y, Masad MA (2009) Mercury-induced oxidative stress in Indian mustard (Brassica juncea L.). Environ Toxicol 24:462–471

    Article  CAS  Google Scholar 

  • Shoham-Frider E, Shelef G, Kress N (2007) Mercury speciation in sediments at a municipal sewage sludge marine disposal site. Mar Environ Res 64(5):601–615

    Article  CAS  Google Scholar 

  • Shrivastava S, Shrivastav A, Sharma J (2016) Co-exposure effects of selenium and mercury on phaseolus vulgaris excised leaves segment by enhancing the NR, anti-oxidative enzyme activity and detoxification mechanisms. Adv Tech Biol Med 4:1–5

    Google Scholar 

  • Singh R, Upadhyay AK, Singh DP (2018) Regulation of oxidative stress and mineral nutrient status by selenium in arsenic treated crop plant Oryza sativa. Ecotox Environ Safe 148:105–113

    Article  CAS  Google Scholar 

  • Sparks DL (2005) Toxic metals in the environment: the role of surfaces. Elements 1:193–197

    Article  CAS  Google Scholar 

  • Srivastava M, Ma LQ, Rathinasabapathi B, Srivastava P (2009) Effects of selenium on arsenic uptake in arsenic hyperaccumulator Pteris vittata L. Bioresour Technol 100:1115–1121

    Article  CAS  Google Scholar 

  • Stahl W, Sies H (2003) Antioxidant activity of carotenoids. Mol Asp Med 24:345–351

    Article  CAS  Google Scholar 

  • Strzalka K, Kostecka-Guga A, Latowski D (2003) Carotenoids and environmental stress in plants: significance of carotenoid-mediated modulation of membrane physical properties. Russ J Plant Physl 50:168–172

    Article  CAS  Google Scholar 

  • Sun HY, Dai HX, Wang XY, Wang GH (2016) Physiological and proteomic analysis of selenium-mediated tolerance to Cd stress in cucumber (Cucumis sativus L.). Ecotox Environ Safe 113:114–126

    Article  CAS  Google Scholar 

  • Syversen T, Kaur P (2012) The toxicology of mercury and its compounds. J Trace Elem Med Biol 26:215–226

    Article  CAS  Google Scholar 

  • Tang WL, Dang F, Evans D, Zhong H, Xiao L (2017) Understanding reduced inorganic mercury accumulation in rice following selenium application: selenium application routes, speciation and doses. Chemosphere 169:369–376

    Article  CAS  Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:1–31

    Article  Google Scholar 

  • Templeton DM, Liu Y (2010) Multiple roles of cadmium in cell death and survival. Chem Biol Interact 188:267–275

    Article  CAS  Google Scholar 

  • Thangavel P, Sulthana AS, Subburam V (1999) Interactive effects of selenium and mercury on the restoration potential of leaves of the medicinal plant, Portulaca oleracea Linn. Sci Total Environ 243:1–8

    Article  Google Scholar 

  • Thomas SA, Rodby KE, Roth EW, Wu J, Gaillard JF (2018) Spectroscopic and microscopic evidence of biomediated HgS species formation from Hg(II)–cysteine complexes: implications for Hg(II) bioavailability. Environ Sci Technol 52

  • Tolu J, Le Hecho I, Bueno M, Thiry Y, Potin-Gautier M (2011) Selenium speciation analysis at trace level in soils. Anal Chim Acta 684(1–2):126–133

    Article  CAS  Google Scholar 

  • Tran TAT, Dinh QT, Cui ZW, Huang J, Wang D, Wei TJ, Liang DL, Sun X, Ning P (2018a) Comparing the influence of selenite (Se4+) and selenate (Se6+) on the inhibition of the mercury (Hg) phytotoxicity to pak choi. Ecotoxicol Environ Saf 147:897–904

    Article  CAS  Google Scholar 

  • Tran TAT, Zhou F, Yang WX, Wang MK, Dinh QT, Wang D, Liang DL (2018b) Detoxification of mercury in soil by selenite and related mechanisms. Ecotoxicol Environ Saf 159:77–84

    Article  CAS  Google Scholar 

  • Truong HYT, Chen YW, Belzile N (2013) Effffect of sulfifide, selenite and mercuric mercury on the growth and methylation capacity of the sulfate reducing bacterium Desulfovibrio desulfuricans. Sci Total Environ 449:373–384

    Article  CAS  Google Scholar 

  • Truong HYT, Chen YW, Saleh M, Nehzati S, George GN, Pickering IJ, Belzile N (2014) Proteomics of Desulfovibrio desulfuricans and X-ray absorption spectroscopy to investigate mercury methylation in the presence of selenium. Metallomics 6:465–475

    Article  CAS  Google Scholar 

  • Vinit-Dunand F, Epron D, Alaoui-Sosse B, Badot PM (2002) Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants. Plant Sci 163:53–58

    Article  CAS  Google Scholar 

  • Wan YN, Yu Y, Wang Q, Qiao YH, Li HF (2016) Cadmium uptake dynamics and translocation in rice seedling: Influence of different forms of selenium. Ecotox Environ Safe 133:127–134

    Article  CAS  Google Scholar 

  • Wang YD, Greger M (2004) Clonal differences in mercury tolerance, accumulation, and distribution in willow. J Environ Qual 33:1779–1785

    Article  CAS  Google Scholar 

  • Wang MY, Chen AK, Wong MH, Qiu RL, Cheng H, Ye ZH (2011) Cadmium accumulation in and tolerance of rice (Oryza sativa L.) varieties with different rates of radial oxygen loss. Environ Pollut 159:1730–1736

    Article  CAS  Google Scholar 

  • Wang X, Tam NFY, Fu S, Ametkhan A, Ouyang Y, Ye ZH (2014) Selenium addition alters mercury uptake, bioavailability in the rhizosphere and root anatomy of rice (Oryza sativa). Ann Bot-London 114:271–278

    Article  CAS  Google Scholar 

  • Wang NB, Zhao J, He XY, Sun HY, Zhang GP, Wu FB (2015) Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype. BMC Genomics 16:432

    Article  CAS  Google Scholar 

  • Wang YJ, Dang F, Evans RD, Zhong H, Zhao JT, Zhou DM (2016a) Mechanistic understanding of MeHg-Se antagonism in soil-rice systems: the key role of antagonism in soil. Sci Rep-UK 6:19477

    Article  CAS  Google Scholar 

  • Wang YJ, Dang F, Zhao JT, Zhong H (2016b) Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil. Environ Pollut 213:232–239

    Article  CAS  Google Scholar 

  • Wang ZZ, Wang HB, Wang HJ, Li QC, Li Y (2020) Effect of soil washing on heavy metal removal and soil quality: A two-sided coin. Ecotoxicol Environ Safe 960(25):00

    Google Scholar 

  • Wu ZC, Wang FH, Liu S, Du YQ, Li FR, Du RY, Wen D, Zhao J (2016) Comparative responses to silicon and selenium in relation to cadmium uptake, compartmentation in roots, and xylem transport in flowering Chinese cabbage (Brassica campestris L. ssp chinensis var. utilis) under cadmium stress. Environ Exp Bot 131:173–180

    Article  CAS  Google Scholar 

  • Xu X, Meng B, Zhang C, Feng X, Gu C, Guo J, Bishop K, Xu Z, Zhang S, Qiu G (2017) The local impact of a coal-fifired power plant on inorganic mercury and methyl-mercury distribution in rice (Oryza sativa L.). Environ Pollut 223:11

    Article  CAS  Google Scholar 

  • Xu XH, Yan M, Liang LC, Lu QH, Han JL, Liu L, Feng XB, Guo JY, Wang YJ, Qiu GL (2019) Impacts of selenium supplementation on soil mercury speciation, and inorganic mercury and methylmercury uptake in rice (Oryza sativa L.). Environ Pollut 249:647–654

    Article  CAS  Google Scholar 

  • Xue T, Hartikainen H, Piironen V (2001) Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant Soil 237:55–61

    Article  CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    Article  CAS  Google Scholar 

  • Yang DY, Chen YW, Gunn JM, Belzile N (2008) Selenium and mercury in organisms: Interactions and mechanisms. Environ Rev 16:71–92

    Article  CAS  Google Scholar 

  • Yathavakilla SKV, Caruso JA (2007) A study of Se-Hg antagonism in Glycine max (soybean) roots by size exclusion and reversed phase HPLC-ICPMS. Anal Bioanal Chem 389:715–723

    Article  CAS  Google Scholar 

  • Yin L, Wang S, Eltayeb AE, Uddin MI, Yamamoto Y, Tsuji W, Takeuchi Y, Tanaka K (2010) Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta 231:609–621

    Article  CAS  Google Scholar 

  • Zhang H (2014a) Interactions of mercury and selenium in soil-rice system. In: Impacts of selenium on the biogeochemical cycles of mercury in terrestrial ecosystems in mercury mining areas. Springer, Berlin Heidelberg, pp 135–149

    Chapter  Google Scholar 

  • Zhang H (2014b) Advances in research on the mechanisms of selenium–mercury interactions and health risk assessment. In: Impacts of selenium on the biogeochemical cycles of mercury in terrestrial ecosystems in mercury mining areas. Springer, Berlin Heidelberg, pp 17–34

    Chapter  Google Scholar 

  • Zhang H, Feng XB, Larssen T, Shang L, Li P (2010) Bioaccumulation of methylmercury versus inorganic mercury in rice (Oryza sativa L.) grain. Environ Sci Technol 44:4499–4504

    Article  CAS  Google Scholar 

  • Zhang H, Feng X, Zhu J, Sapkota A, Meng B, Yao H, Qin H, Larssen T (2012) Selenium in soil inhibits mercury uptake and translocation in Rice (Oryza sativa L.). Environ Sci Technol 46:10040–10046

    Article  CAS  Google Scholar 

  • Zhang H, Feng XB, Jiang CX, Li QH, Liu Y, Gu CH, Shang LH, Li P, Lin Y, Larssen T (2014) Understanding the paradox of selenium contamination in mercury mining areas: high soil content and low accumulation in rice. Environ Pollut 188:27–36

    Article  CAS  Google Scholar 

  • Zhao JT, Gao YX, Li YF, Hu Y, Peng XM, Dong YX, Li B, Chen CY, Chai ZF (2013) Selenium inhibits the phytotoxicity of mercury in garlic (Allium sativum). Environ Res 125:75–81

    Article  CAS  Google Scholar 

  • Zhao J, Li Y, Li Y, Gao Y, Li B, Hu Y, Zhao Y, Chai Z (2014) Selenium modulates mercury uptake and distribution in rice (Oryza sativa L.), in correlation with mercury species and exposure level. Metallomics 6:1951–1957

    Article  CAS  Google Scholar 

  • Zhao AQ, Gao LY, Chen BQ, Feng L (2019) Phytoremediation potential of Miscanthus sinensis for mercury-polluted sites and its impacts on soil microbial community. Environ Sci Pollut Res 26:34818–34829

    Article  CAS  Google Scholar 

  • Zhong H, Wang WX (2009) The role of sorption and bacteria in mercury partitioning and bioavailability in artificial sediments. Environ Pollut 157:981–986

    Article  CAS  Google Scholar 

  • Zhou XB, Li YY (2019) Effect of iron plaque and selenium on mercury uptake and translocation in rice seedlings grown in solution culture. Environ Sci Pollut Res 26(14):13795–13803

    Article  CAS  Google Scholar 

  • Zhou XB, Shi WM (2007) Effect of iron plaque outside roots on selenium uptake and translocation by iron deficient rice (Oryza sativa L.). Pedosphere 17:580–570

    Article  CAS  Google Scholar 

  • Zhou XB, Wang WH, Yu SH, Zhou YX (2013) Interactive effects of selenium and mercury on their uptake by rice sedlings. Res J Appl Sci Eng Technol 5:4733–4739

    Article  CAS  Google Scholar 

  • Zhou XB, Shu-Hui YU, Wang WH, Chang H, Zhou YX (2014) Effects of application of selenium in soil on the formation of root surface iron plaque and mercury uptake by rice plants. J Southwest Univ 36(1):91–95

    Google Scholar 

  • Zhou XB, Gao AX, Lai F, Zhang CM, Xu WH (2017) The role of selenium in soil: effect on the uptake and translocation of arsenic in rice (Oryza sativa L.). Int J Agric Biol 19:1227–1234

    Article  CAS  Google Scholar 

  • Zhu YG, Pilon-Smits EAH, Zhao FJ, Williams PN, Meharg AA (2009) Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci 14:436–442

    Article  CAS  Google Scholar 

  • Zhu SM, Liang YL, Zhao FJ, Gao DK, An XJ, Kong FC (2017) Spraying foliar selenium fertilizer on quality of table grape (Vitis vinifera L.) from different source varieties. Sci Hortic 218:87–94

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 41171379 and 41571454, to D.L. Liang).

Author information

Authors and Affiliations

Authors

Contributions

Thi Anh Thu Tran synthesized document for the section “Reduction of Hg bioavailability in soil” and wrote the whole manuscript; Quang Toan Dinh synthesized document for the section “Reduction of Hg availability on the interface of soil–plant root”; Fei Zhou and Hui Zhai synthesized document for the section “Reduction of Hg uptake and translocation within plant”; Mingyue Xue and Zekun Du synthesized document for the section “Reduction of oxidative stress induced by Hg in plants”; Gary S Bañuelos revised and commented on the manuscript; Dongli Liang developed article ideas, revised, and commented on the manuscript.

Corresponding author

Correspondence to Dongli Liang.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Elena Maestri

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Se application reduced Hg soil bioavailability via transformation to immobile species.

• Se application in soil led to formation HgSe complexes in rhizosphere and/or roots.

• Se application prevented to root uptake and translocation of Hg to aerial parts.

• Se application positively affected physiological and biochemical processes of plants.

• Se doses only significantly given the narrow range between deficiency and toxicity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, T.A.T., Dinh, Q.T., Zhou, F. et al. Mechanisms underlying mercury detoxification in soil–plant systems after selenium application: a review. Environ Sci Pollut Res 28, 46852–46876 (2021). https://doi.org/10.1007/s11356-021-15048-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-15048-1

Keywords

Navigation