Skip to main content

Advertisement

Log in

In situ phytoremediation of heavy metal–contaminated soil and groundwater: a green inventive approach

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The heavy metal contamination of soil and groundwater is a serious threat to environment worldwide. The survival of human being primarily relies upon soil and groundwater sources. Therefore, the remediation of heavy metal-contaminated soil and groundwater is a matter of utmost concern. Heavy metals are non-degradable and persist in the environment and subsequently contaminate the food chain. Heavy metal pollution puts a serious impact on human health and it adversely affects our physical body. Although, numerous in situ conventional technologies have been utilized for the treatment purpose, but most of the techniques have some limitations such as high cost, deterioration of soil properties, disturbances to soil native flora and fauna and intensive labour. Despite that, in situ phytoremediation is a cost-effective, eco-friendly, solar-driven and novel approach with significant public acceptance. The past research reflects rare discussion addressing both (heavy metal in situ phytoremediation of soil and groundwater) in one platform. The present review article covers both the concepts of in situ phytoremediation of soil and groundwater with major emphasis on health risks of heavy metals, enhanced integrated approaches of in situ phytoremediation, mechanisms of in situ phytoremediation along with effective hyperaccumulator plants for heavy metals remediation, challenges and future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable

Abbreviations

ABC:

adenosine triphosphate binding cassette

AtHMA4:

Arabidopsis thaliana heavy metal ATPase 4

ATP:

adenosine triposphate

BCF:

bio-concentration factor

BIS:

Bureau of Indian Standards

EDI:

estimated daily intake

EPA:

Environmental Protection Agency

FAO:

Food and Agriculture Organization

HI:

hazard index

HPI:

high pollution index

LOAEL:

lowest observed adverse effect level

MI:

metal index

MI:

maximum limit

Nano-Ag:

nanosilver

Nano-Fe3O4 :

nanoferrosoferric oxide

Nano-SnO2 :

nanostannic oxide

Nano-TiO2 :

titanium dioxide nanoparticles

Nano-Zn:

nanozinc

NCB:

nanocarbon black

NcZNT1:

Noccaea caerulescens zinc transporter 1

NHAP:

nanohydroxyapatite

NOAEL:

no observed adverse effect level

nZVI:

nanozero valent ions

PGPR:

plant growth-promoting rhizobacteria

POPs:

persistent organic pollutants

PvTIP:

Pteris vittata tonoplast intrinsic protein

RfD:

reference dose

TF:

translocation factor

THQ:

target hazard quotient

USEPA:

United States Environmental Protection Agency

WHO:

World Health Organization

WQI:

water quality index

References

  • Abdel Latef AAH, Srivastava AK, El-sadek MSA, Kordrostami M, Tran LSP (2018) Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degrad Dev 29(4):1065–1073

    Article  Google Scholar 

  • Ahmed MK, Baki MA, Kundu GK, Islam MS, Islam MM, Hossain MM (2016) Human health risks from heavy metals in fish of Buriganga river, Bangladesh. Springer Plus 5(1):1–12

    Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881

    CAS  Google Scholar 

  • Anawar HM, Garcia-Sanchez A, Santa Regina I (2008) Evaluation of various chemical extraction methods to estimate plant-available arsenic in mine soils. Chemosphere 70(8):1459–1467

    CAS  Google Scholar 

  • Andersen CP, King G, Plocher M, Storm M, Pokhrel LR, Johnson MG, Rygiewicz PT (2016) Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles. Environ Toxicol Chem 35(9):2223–2229

    CAS  Google Scholar 

  • Antonoglou O, Moustaka J, Adamakis IDS, Sperdouli I, Pantazaki AA, Moustakas M, Dendrinou-Samara C (2018) Nanobrass Cu Zn nanoparticles as foliar spray nonphytotoxic fungicides. ACS Appl Mater Interfaces 10(5):4450–4461

    CAS  Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25(8):356–362

    CAS  Google Scholar 

  • Aruliah R, Selvi A, Theertagiri J, Ananthaselvam A, Kumar KS, Madhavan J, Rahman P (2019) Integrated remediation processes towards heavy metal removal/recovery from various environments-a review. Front Environ Sci 7:66

    Google Scholar 

  • Asad SA, Young SD, West HM (2015) Effect of zinc and glucosinolates on nutritional quality of Noccaea caerulescens and infestation by Aleyrodes proletella. Sci Total Environ 511:21–27

    CAS  Google Scholar 

  • Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN (2019) Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf 174:714–727

    CAS  Google Scholar 

  • Bell TH, Cloutier-Hurteau B, Al-Otaibi F, Turmel MC, Yergeau E, Courchesne F, St-Arnaud M (2015) Early rhizosphere microbiome composition is related to the growth and Zn uptake of willows introduced to a former landfill. Environ Microbiol 7(8):3025–3038

    Google Scholar 

  • Bennisse R, Labat M, Elasli A, Brhada F, Chandad F, Liegbott PP, Qatibi AI (2004) Rhizosphere bacterial populations of metallophyte plants in heavy metal-contaminated soils from mining areas in semiarid climate. World J Microbiol Biotechnol 20(7):759–766

    CAS  Google Scholar 

  • Burges A, Alkorta I, Epelde L, Garbisu C (2017) From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. Int J Phytorem 20:384–397

    Google Scholar 

  • Calheiros CS, Rangel AO, Castro PM (2008) The effects of tannery wastewater on the development of different plant species and chromium accumulation in Phragmites australis. Arch Environ Contam Toxicol 55(3):404–414

    CAS  Google Scholar 

  • Cavaleri F (2015) Review of amyotrophic lateral sclerosis, Parkinson’s and Alzheimer’s diseases helps further define pathology of the novel paradigm for Alzheimer’s with heavy metals as primary disease cause. Med Hypotheses 85:779–790

    CAS  Google Scholar 

  • Chand S, Singh S, Singh VK, Patra DD (2015) Utilization of heavy metal-rich tannery sludge for sweet basil (Ocimum basilicum L.) cultivation. Environ Sci Pollut Res 22(10):7470–7475

    CAS  Google Scholar 

  • Chaney RL, Baklanov IA (2017) Phytoremediation and phytomining: status and promise. Adv Bot Res 83:189–221

    CAS  Google Scholar 

  • Chaney RL, Broadhurst CL, Centofanti T (2010) Phytoremediation of soil trace elements. Trace Elems Soil:311–352

  • Chatterjee C, Gopal R, Dube BK (2006) Physiological and biochemical responses of French bean to excess cobalt. J Plant Nutr 29(1):127–136

    CAS  Google Scholar 

  • Chen Y, Liu Y, Ding Y, Wang X, Xu J (2015) Overexpression of PtPCS enhances cadmium tolerance and cadmium accumulation in tobacco. Plant Cell Tissue Organ Cult (PCTOC) 121(2):389–396

    CAS  Google Scholar 

  • Cheng M, Zeng G, Huang D, Lai C, Xu P, Zhang C, Liu Y (2016) Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chem Eng J 284:582–598

    CAS  Google Scholar 

  • Cherfi A, Abdoun S, Gaci O (2014) Food survey: levels and potential health risks of chromium, lead, zinc and copper content in fruits and vegetables consumed in Algeria. Food Chem Toxicol 70:48–53

    CAS  Google Scholar 

  • Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, Huang X (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30(3):665–676

    CAS  Google Scholar 

  • Copat C, Grasso A, Fiore M, Cristaldi A, Zuccarello P, Signorelli SS, Conti GO, Ferrante M (2018) Trace elements in seafood from the Mediterranean Sea: an exposure risk assessment. Food ChemToxicol 115:13–19

    CAS  Google Scholar 

  • Cristaldi A, Conti GO, Jho EH, Zuccarello P, Grasso A, Copat C, Ferrante M (2017) Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environ Technol Innov 8:309–326

    Google Scholar 

  • Cristaldi A, Conti GO, Cosentino SL, Mauromicale G, Copat C, Grasso A, Ferrante M (2020) Phytoremediation potential of Arundo donax (Giant reed) in contaminated soil by heavy metals. Environ Res:109427

  • Das N, Bhattacharya S, Maiti MK (2016) Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation. Plant Physiol Biochem 105:297–309

    CAS  Google Scholar 

  • Deng H, Li M, Chen Y, Luo Y, Yu F (2010) A new discovered manganese hyperaccumulator-Polygonum pubescens Blume. Fresenius Environ Bull 19(1):94–99

    CAS  Google Scholar 

  • Dinh N, van der Ent A, Mulligan DR, Nguyen AV (2018) Zinc and lead accumulation characteristics and in vivo distribution of Zn2+ in the hyperaccumulator Noccaea caerulescens elucidated with fluorescent probes and laser confocal microscopy. Environ Exp Bot 147:1–12

    CAS  Google Scholar 

  • Emenike CU, Jayanthi B, Agamuthu P, Fauziah SH (2018) Biotransformation and removal of heavy metals: a review of phytoremediation and microbial remediation assessment on contaminated soil. Environ Rev 26(2):156–168

    CAS  Google Scholar 

  • Fakhri Y, Saha N, Miri A, Baghaei M, Roomiani L, Ghaderpoori M, Bay A (2018) Metal concentrations in fillet and gill of parrotfish (Scarus ghobban) from the Persian Gulf and implications for human health. Food Chem Toxicol 118:348–354

    CAS  Google Scholar 

  • Fang Y, Sun X, Yang W, Ma N, Xin Z, Fu J, Hu Q (2014) Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China. Food Chem 147:147–151

    CAS  Google Scholar 

  • FAO (Food and Agriculture Organization) (2014) The State of World Fisheries and Aquaculture 2014. Food and Agriculture Organization of United Nation, Rome pp 223

  • Farid M, Ali S, Rizwan M, Ali Q, Abbas F, Bukhari SAH, Wu L (2017) Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants. Ecotoxicol Environ Saf 145:90–102

    CAS  Google Scholar 

  • Fernandes JP, Mucha AP, Francisco T, Gomes CR, Almeida CMR (2017) Silver nanoparticles uptake by salt marsh plants–implications for phytoremediation processes and effects in microbial community dynamics. Mar Pollut Bull 119(1):176–183

    CAS  Google Scholar 

  • Ferrante M, Napoli S, Grasso A, Zuccarello P, Cristaldi A, Copat C (2019) Systematic review of arsenic in fresh seafood from the Mediterranean Sea and European Atlantic coasts: a health risk assessment. Food Chem Toxicol 126:322–331

    CAS  Google Scholar 

  • Filippini T, Tesauro M, Fiore M, Malagoli C, Consonni M, Violi F, Iacuzio L, Arcolin E, Conti GO, Cristaldi A, Zuccarello P, Zucchi E, Mazzini L, Pisano F, Gagliardi I, Patti F, Mandrioli J, Ferrante M, Vinceti M (2020) Environmental and occupational risk factors of amyotrophic lateral sclerosis: a population-based case-control study. Int J Environ Res Public Health 17:2882

    Google Scholar 

  • Fredrickson JK, Kostandarithes HM, Li SW, Plymale AE, Daly M (2000) Reduction of fe (III), cr (VI), U (VI), and tc (VII) by Deinococcus radiodurans R1. Appl Environ Microbiol 66(5):2006–2011

    CAS  Google Scholar 

  • Galal TM, Gharib FA, Ghazi SM, Mansour KH (2017) Phytostabilization of heavy metals by the emergent macrophyte Vossia cuspidata (Roxb.) Griff.: a phytoremediation approach. Int J Phytorem 19(11):992–999

    CAS  Google Scholar 

  • Galal TM, Eid EM, Dakhil MA, Hassan LM (2018) Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands. Int J Phytorem 20(5):440–447

    CAS  Google Scholar 

  • Gall JE, Boyd RS, Rajakaruna N (2015) Transfer of heavy metals through terrestrial food webs: a review. Environ Monit Assess 187(4):201

    Google Scholar 

  • Gao Z, Karlsson I, Geisen S, Kowalchuk G, Jousset A (2019) Protists: puppet masters of the rhizosphere microbiome. Trends Plant Sci 24(2):165–176

    CAS  Google Scholar 

  • García JAL, Grijalbo L, Ramos B, Fernández-Piñas F, Rodea-Palomares I, Gutierrez-Mañero FJ (2019) Combined phytoremediation of metal-working fluids with maize plants inoculated with different microorganisms and toxicity assessment of the phytoremediated waste. Chemosphere 90:2654–2661

    Google Scholar 

  • García-Salgado S, García-Casillas D, Quijano-Nieto MA, Bonilla-Simón MM (2012) Arsenic and heavy metal uptake and accumulation in native plant species from soils polluted by mining activities. Water Air Soil Pollut 223(2):559–572

    Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ 6(4):18

    Google Scholar 

  • Gupta SK, Ansari FA, Nasr M, Chabukdhara M, Bux F (2018) Multivariate analysis and health risk assessment of heavy metal contents in foodstuffs of Durban, South Africa. Environ Monit Assess 190(3):151

    Google Scholar 

  • Gupta N, Yadav KK, Kumar V, Kumar S, Chadd RP, Kumar A (2019) Trace elements in soil-vegetables interface: translocation, bioaccumulation, toxicity and amelioration-a review. Sci Total Environ 651:2927–2942

    CAS  Google Scholar 

  • Harguinteguy CA, Schreiber R, Pignata ML (2013) Myriophyllum aquaticum as a biomonitor of water heavy metal input related to agricultural activities in the Xanaes River (Córdoba, Argentina). Ecol Indic 27:8–16

    CAS  Google Scholar 

  • Houda Z, Bejaoui Z, Albouchi A, Gupta DK, Corpas FJ (2016) Comparative study of plant growth of two poplar tree species irrigated with treated wastewater, with particular reference to accumulation of heavy metals (Cd, Pb, As, and Ni). Environ Monit Assess 188(2):99

    Google Scholar 

  • Hu W, Huang B, Tian K, Holm PE, Zhang Y (2017) Heavy metals in intensive greenhouse vegetable production systems along Yellow Sea of China: levels, transfer and health risk. Chemosphere 167:82–90

    CAS  Google Scholar 

  • Huang D, Qin X, Peng Z, Liu Y, Gong X, Zeng G, Hu Z (2018) Nanoscale zero-valent iron assisted phytoremediation of Pb in sediment: impacts on metal accumulation and antioxidative system of Lolium perenne. Ecotoxicol Environ Saf 153:229–237

    CAS  Google Scholar 

  • Hussain J, Husain I, Arif M, Gupta N (2017) Studies on heavy metal contamination in Godavari river basin. Appl Water Sci 7(8):4539–4548

    CAS  Google Scholar 

  • Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75(4):339–364

    Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72

    Google Scholar 

  • Jan FA, Ishaq M, Khan S, Ihsanullah I, Ahmad I, Shakirullah M (2010) A comparative study of human health risks via consumption of food crops grown on wastewater irrigated soil (Peshawar) and relatively clean water irrigated soil (lower Dir). J Hazard Mater 179:612–621

    CAS  Google Scholar 

  • Jaskulak M, Grobelak A, Grosser A, Vandenbulcke F (2019) Gene expression, DNA damage and other stress markers in Sinapis alba L. exposed to heavy metals with special reference to sewage sludge application on contaminated sites. Ecotoxicol Environ Saf 181:508–517

    CAS  Google Scholar 

  • Ji P, Sun T, Song Y, Ackland ML, Liu Y (2011) Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L. Environ Pollut 159(3):762–768

    CAS  Google Scholar 

  • Jin XF, Liu D, Islam E, Mahmood Q, Yang XE, He ZL, Stoffella PJ (2009) Effects of zinc on root morphology and antioxidant adaptations of cadmium-treated Sedum alfredii H. J Plant Nutr 32(10):1642–1656

    CAS  Google Scholar 

  • Jin Y, Liu W, Li XL, Shen SG, Liang SX, Liu C, Shan L (2016) Nano-hydroxyapatite immobilized lead and enhanced plant growth of ryegrass in a contaminated soil. Ecol Eng 95:25–29

    Google Scholar 

  • Ju W, Liu L, Jin X, Duan C, Cui Y, Wang J, Ma D, Zhao W, Wang Y, Fang L (2020) Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of cu contaminated soils. Chemosphere 254:126724

    CAS  Google Scholar 

  • Juwarkar AA, Nair A, Dubey KV, Singh SK, Devotta S (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68(10):1996–2002

    CAS  Google Scholar 

  • Kalve S, Sarangi BK, Pandey RA, Chakrabarti T (2011) Arsenic and chromium hyperaccumulation by an ecotype of Pteris vittata–prospective for phytoextraction from contaminated water and soil. Curr Sci:888–894

  • Kamal M, Ghaly AE, Mahmoud N, Cote R (2004) Phytoaccumulation of heavy metals by aquatic plants. Environ Int 29(8):1029–1039

    CAS  Google Scholar 

  • Katoh M, Risky E, Sato T (2017) Immobilization of lead migrating from contaminated soil in rhizosphere soil of barley (Hordeum vulgare L.) and hairy vetch (Vicia villosa) using hydroxyapatite. Int J Environ Res Public Health 14(10):1273

    Google Scholar 

  • Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol Adv 28(1):61–69

    CAS  Google Scholar 

  • Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C (2017) A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor 182:247–268

    CAS  Google Scholar 

  • Khan K, Lu Y, Khan H, Ishtiaq M, Khan S, Waqas M, Wei L, Wang T (2013) Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan. Food Chem Toxicol 58:449–458

    CAS  Google Scholar 

  • Khan A, Khan S, Khan MA, Qamar Z, Waqas M (2015) The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environ Sci Pollut Res 22(18):13772–13799

    CAS  Google Scholar 

  • Kim M, Kim WS, Tripathi BM, Adams J (2014) Distinct bacterial communities dominate tropical and temperate zone leaf litter. Microb Ecol 67(4):837–848

    CAS  Google Scholar 

  • Koptsik GN (2014) Problems and prospects concerning the phytoremediation of heavy metal polluted soils: a review. Eurasian Soil Sci 47(9):923–939

    CAS  Google Scholar 

  • Koźmińska A, Wiszniewska A, Hanus-Fajerska E, Muszyńska E (2018) Recent strategies of increasing metal tolerance and phytoremediation potential using genetic transformation of plants. Plant Biotechnol Rep 12(1):1–14

    Google Scholar 

  • Kumar R, Srivastava M, Dubey NK (2007) Evaluation of Cymbopogon martinii oil extract for control of postharvest insect deterioration in cereals and legumes. J Food Prot 70(1):172–178

    CAS  Google Scholar 

  • Kumar M, Rahman MM, Ramanathan AL, Naidu R (2016) Arsenic and other elements in drinking water and dietary components from the middle Gangetic plain of Bihar, India: health risk index. Sci Total Environ 539:125–134

    CAS  Google Scholar 

  • Kumar A, Chaturvedi AK, Yadav K, Arunkumar KP, Malyan SK, Raja P, Kour D (2019a) Fungal phytoremediation of heavy metal-contaminated resources: current scenario and future prospects. In: Yadav A, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi. Fungal Biology. Springer, Cham, pp 437–461

    Google Scholar 

  • Kumar S, Prasad S, Yadav KK, Shrivastava M, Gupta N, Nagar S, Malav LC (2019b) Hazardous heavy metals contamination of vegetables and food chain: role of sustainable remediation approaches-a review. Environ Res 179:108792

    CAS  Google Scholar 

  • Kumar A, Kumar A, Cabral-Pinto MMS, Chaturvedi AK, Shabnam AA, Subrahmanyam G, Mondal R, Gupta DK, Malyan SK, Kumar SS, Khan SA, Yadav KK (2020) Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches. Int J Environ Res Public Health 17(7):2179

    CAS  Google Scholar 

  • Kumari P, Rastogi A, Shukla A, Srivastava S, Yadav S (2018) Prospects of genetic engineering utilizing potential genes for regulating arsenic accumulation in plants. Chemosphere 211:397–406

    CAS  Google Scholar 

  • Lajayer BA, Moghadam NK, Maghsoodi MR, Ghorbanpour M, Kariman K (2019) Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants: mechanisms and efficiency improvement strategies. Environ Sci Pollut Res 26(9):8468–8484

    Google Scholar 

  • Lasat MM (2000) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Subst Res 2(1):5

    Google Scholar 

  • LeDuc DL, Terry N (2005) Phytoremediation of toxic trace elements in soil and water. J Ind Microbiol Biotechnol 32(11–12):514–520

    CAS  Google Scholar 

  • Li WC, Ye ZH, Wong MH (2007) Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii. J Exp Bot 58(15–16):4173–4182

    CAS  Google Scholar 

  • Li JT, Liao B, Lan CY, Ye ZH, Baker AJM, Shu WS (2010) Cadmium tolerance and accumulation in cultivars of a high-biomass tropical tree (Averrhoa carambola) and its potential for phytoextraction. J Environ Qual 39(4):1262–1268

    CAS  Google Scholar 

  • Liang SX, Jin Y, Liu W, Li X, Shen SG, Ding L (2017) Feasibility of Pb phytoextraction using nano-materials assisted ryegrass: results of a one-year field-scale experiment. J Environ Manag 190:170–175

    CAS  Google Scholar 

  • Lin Q, Wang Z, Ma S, Chen Y (2006) Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil. Sci Total Environ 368(2–3):814–822

    CAS  Google Scholar 

  • Lin YF, Hassan Z, Talukdar S, Schat H, Aarts MG (2016) Expression of the ZNT1 zinc transporter from the metal hyperaccumulator Noccaea caerulescens confers enhanced zinc and cadmium tolerance and accumulation to Arabidopsis thaliana. PLoS One 11(3):e0149750

    Google Scholar 

  • Liu LP, Liao ZP, Yin D, Li WD, Liu D, Li Q, He M (2010) The protective effects of Polygonum multiflorum stilbeneglycoside preconditioning in an ischemia/reperfusion model of HUVECs. Acta Pharmacol Sin 31(4):405–412

    Google Scholar 

  • Liu X, Song Q, Tang Y, Li W, Xu J, Wu J, Brookes PC (2013) Human health risk assessment of heavy metals in soil–vegetable system: a multi-medium analysis. Sci Total Environ 463:530–540

    Google Scholar 

  • Loreau M (2001) Microbial diversity, producer–decomposer interactions and ecosystem processes: a theoretical model. Proc R Soc Lond Ser B Biol Sci 268(1464):303–309

    CAS  Google Scholar 

  • Lorestani B, Yousefi N, Cheraghi M, Farmany A (2013) Phytoextraction and phytostabilization potential of plants grown in the vicinity of heavy metal-contaminated soils: a case study at an industrial town site. Environ Monit Assess 185(12):10217–10223

    CAS  Google Scholar 

  • Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121

    CAS  Google Scholar 

  • Mahmood Q, Mirza N, Shaheen S (2015) Phytoremediation using algae and macrophytes: I. In: Ansari A, Gill S, Gill R, Lanza G, Newman L (eds) Phytoremediation. Springer, Cham, pp 265–289

    Google Scholar 

  • Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11(3):843–872

    CAS  Google Scholar 

  • Mao C, Song Y, Chen L, Ji J, Li J, Yuan X, Theiss F (2019) Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice. Catena 175:339–348

    CAS  Google Scholar 

  • Marschner P, Crowley D, Yang CH (2004) Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 261(1–2):199–208

    CAS  Google Scholar 

  • Mazej Z, Germ M (2009) Trace element accumulation and distribution in four aquatic macrophytes. Chemosphere 74(5):642–647

    CAS  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect 116(3):278–283

    CAS  Google Scholar 

  • Mesjasz-Przybylowicz J, Nakonieczny M, Migula P, Augustyniak M, Tarnawska M, Reimold WU, Koeberl C, Przybylowicz W, Glowacka E (2004) Uptake of cadmium, lead, nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii. Acta Biol Cracov Ser Bot 46:75–85

    Google Scholar 

  • Milić D, Luković J, Ninkov J, Zeremski-Škorić T, Zorić L, Vasin J, Milić S (2012) Heavy metal content in halophytic plants from inland and maritime saline areas. Cent Eur J Biol 7(2):307–317

    Google Scholar 

  • Mishra S, Maiti A (2017) The efficiency of Eichhornia crassipes in the removal of organic and inorganic pollutants from wastewater: a review. Environ Sci Pollut Res 24(9):7921–7937

    CAS  Google Scholar 

  • Mishra S, Tiwary D, Ohri A, Agnihotri AK (2018) Assessment of groundwater quality using WQI and GIS near the Karsara municipal landfill site, Varanasi, India. Arab J Geosci 11(11):252

    Google Scholar 

  • Mkandawire M, Dudel EG (2005) Accumulation of arsenic in Lemna gibba L.(duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany. Sci Total Environ 336(1–3):81–89

    CAS  Google Scholar 

  • Mokhtar H, Morad N, Fizri FFA (2011) Hyperaccumulation of copper by two species of aquatic plants. In Int Conf Environ Sci Eng 8:115–118

    Google Scholar 

  • Mousavi SM, Motesharezadeh B, Hosseini HM, Alikhani H, Zolfaghari AA (2018) Root-induced changes of Zn and Pb dynamics in the rhizosphere of sunflower with different plant growth promoting treatments in a heavily contaminated soil. Ecotoxicol Environ Saf 147:206–216

    CAS  Google Scholar 

  • Mukhopadhyay S, Maiti SK (2010) Phytoremediation of metal enriched mine waste: a review. Global J Environ Res 4:135–150

    CAS  Google Scholar 

  • Mwakalapa EB, Mmochi AJ, Müller MHB, Mdegela RH, Lyche JL, Polder A (2018) Occurrence and levels of persistent organic pollutants (POPs) in farmed and wild marine fish from Tanzania. A Pilot Study. Chemosphere 191:438–449

    CAS  Google Scholar 

  • Mwakalapa EB, Simukoko CK, Mmochi AJ, Mdegela RH, Berg V, Müller MHB, Polder A (2019) Heavy metals in farmed and wild milkfish (Chanos chanos) and wild mullet (Mugil cephalus) along the coasts of Tanzania and associated health risk for humans and fish. Chemosphere 224:176–186

    CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    CAS  Google Scholar 

  • Nejad ZD, Jung MC, Kim KH (2018) Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environ Geochem Health 40(3):927–953

    Google Scholar 

  • Newete SW, Byrne MJ (2016) The capacity of aquatic macrophytes for phytoremediation and their disposal with specific reference to water hyacinth. Environ Sci Pollut Res 23(11):10630–10643

    CAS  Google Scholar 

  • Newsham KK, Hopkins DW, Carvalhais LC, Fretwell PT, Rushton SP, O’Donnell AG, Dennis PG (2016) Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nat Clim Chang 6(2):182–186

    Google Scholar 

  • Orisakwe OE, Nduka JK, Amadi CN, Dike DO, Bede O (2012) Heavy metals health risk assessment for population via consumption of food crops and fruits in Owerri, south eastern, Nigeria. Chem Cent J 6:77

    CAS  Google Scholar 

  • Pacwa-Płociniczak M, Płociniczak T, Yu D, Kurola JM, Sinkkonen A, Piotrowska-Seget Z, Romantschuk M (2018) Effect of Silene vulgaris and heavy metal pollution on soil microbial diversity in long-term contaminated soil. Water Air Soil Pollut 229(1):13

    Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184(1–4):105–126

    CAS  Google Scholar 

  • Pandey VC (2013) Suitability of Ricinus communis L. cultivation for phytoremediation of fly ash disposal sites. Ecol Eng 57:336–341

    Google Scholar 

  • Park JM, Lee JS, Lee JU, Chon HT, Jung MC (2006) Microbial effects on geochemical behavior of arsenic in As-contaminated sediments. J Geochem Explor 88(1–3):134–138

    CAS  Google Scholar 

  • Pattnaik S, Dash D, Mohapatra S, Pattnaik M, Marandi AK, Das S, Samantaray DP (2020) Improvement of rice plant productivity by native Cr (VI) reducing and plant growth promoting soil bacteria Enterobacter cloacae. Chemosphere 240:124895

    CAS  Google Scholar 

  • Pilon-Smits EAH, De Souza MP, Hong G, Amini A, Bravo RC, Payabyab ST, Terry N (1999) Selenium volatilization and accumulation by twenty aquatic plant species. J Environ Qual 28(3):1011–1018

    CAS  Google Scholar 

  • Prasad MNV, De Oliveira Freitas HM (2003) Metal hyperaccumulation in plants biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:110–146 Processes: a theoretical model. Proc R Soc Lond B268:303–309

    Google Scholar 

  • Radziemska M, Vaverková MD, Baryła A (2017) Phytostabilization—management strategy for stabilizing trace elements in contaminated soils. Int J Environ Res Public Health 14(9):958

    Google Scholar 

  • Rafati M, Khorasani N, Moattar F, Shirvany A, Moraghebi F, Hosseinzadeh S (2011) Phytoremediation potential of Populus alba and Morus alba for cadmium, chromuim and nickel absorption from polluted soil. Int J Environ Res 5(4):961–970

    CAS  Google Scholar 

  • Rai PK (2019) Heavy metals/metalloids remediation from wastewater using free floating macrophytes of a natural wetland. Environ Technol Innov 15:100393

    Google Scholar 

  • Rai PK, Lee SS, Zhang M, Tsang YF, Kim KH (2019) Heavy metals in food crops: health risks, fate, mechanisms, and management. Environ Int 125:365–385

    CAS  Google Scholar 

  • Ravindra K, Mor S (2019) Distribution and health risk assessment of arsenic and selected heavy metals in groundwater of Chandigarh, India. Environ Pollut 250:820–830

    CAS  Google Scholar 

  • Reddy PVL, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2016) Lessons learned: are engineered nanomaterials toxic to terrestrial plants. Sci Total Environ 568:470–479

    CAS  Google Scholar 

  • Regvar M, Vogel-Mikuš K, Kugonič N, Turk B, Batič F (2006) Vegetational and mycorrhizal successions at a metal polluted site: indications for the direction of phytostabilisation. Environ Pollut 144(3):976–984

    CAS  Google Scholar 

  • Robinson B, Kim N, Marchetti M, Moni C, Schroeter L, van den Dijssel C, Clothier B (2006) Arsenic hyperaccumulation by aquatic macrophytes in the Taupo volcanic zone, New Zealand. Environ Exp Bot 58(1–3):206–215

    CAS  Google Scholar 

  • Saha D, Shukla RR (2013) Genesis of arsenic-rich groundwater and the search for alternative safe aquifers in the Gangetic plain, India. Water Environ Res 85(12):2254–2264

    CAS  Google Scholar 

  • Sakakibara M, Ohmori Y, Ha NTH, Sano S, Sera K (2011) Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis. Clean: Soil Air Water 39(8):735–741

    CAS  Google Scholar 

  • Saraswat S, Rai JPN (2009) Phytoextraction potential of six plant species grown in multimetal contaminated soil. Chem Ecol 25(1):1–11

    CAS  Google Scholar 

  • Saria JA (2016) Assessment of health risks associated with concentrations of heavy metals in fish from the coast of Tanzania. Assessment 2(11)

  • Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4(2):118–138

    CAS  Google Scholar 

  • Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    CAS  Google Scholar 

  • Sessitsch A, Weilharter A, Gerzabek MH, Kirchmann H, Kandeler E (2001) Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl Environ Microbiol 67(9):4215–4224

    CAS  Google Scholar 

  • Shah V, Daverey A (2020) Phytoremediation: a multidisciplinary approach to clean up heavy metal contaminated soil. Phytoremediation: a multidisciplinary approach to clean up heavy metal contaminated soil. Environ Technol Innov 18:100774

    Google Scholar 

  • Sharma S, Kaur J, Nagpal AK, Kaur I (2016) Quantitative assessment of possible human health risk associated with consumption of arsenic contaminated groundwater and wheat grains from Ropar wetland and its environs. Environ Monit Assess 188:506

    Google Scholar 

  • Sharma S, Nagpal AK, Kaur I (2018) Heavy metal contamination in soil, food crops and associated health risks for residents of Ropar wetland, Punjab, India and its environs. Food Chem 255:15–22

    CAS  Google Scholar 

  • Sharma GK, Jena RK, Hota S, Kumar A, Ray P, Fagodiya RK, Ray SK (2020) Recent development in bioremediation of soil pollutants through biochar for environmental sustainability. In biochar applications in agriculture and environment management springer, Cham (123-140)

  • Siemianowski O, Barabasz A, Kendziorek M, Ruszczyńska A, Bulska E, Williams LE, Antosiewicz DM (2014) HMA4 expression in tobacco reduces Cd accumulation due to the induction of the apoplastic barrier. J Exp Bot 65(4):1125–1139

    CAS  Google Scholar 

  • Singh J, Lee BK (2016) Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): a possible mechanism for the removal of Cd from the contaminated soil. J Environ Manag 170:88–96

    CAS  Google Scholar 

  • Singh J, Lee BK (2018) Effects of Nano-TiO2 particles on bioaccumulation of 133Cs from the contaminated soil by soybean (Glycine max). Process Saf Environ Prot 116:301–311

    CAS  Google Scholar 

  • Singh S, Sinha S (2005) Accumulation of metals and its effects in Brassica juncea (L.) Czern. (cv. Rohini) grown on various amendments of tannery waste. Ecotoxicol Environ Saf 62(1):118–127

    CAS  Google Scholar 

  • Smith DL, Gravel V, Yergeau E (2017) Signaling in the phytomicrobiome. Front Plant Sci 8:611

    Google Scholar 

  • Srivastav A, Yadav KK, Yadav S, Gupta N, Singh JK, Katiyar R, Kumar V (2018) Nano-phytoremediation of pollutants from contaminated soil environment: current scenario and future prospects. In: Ansari A, Gill S, Gill R, Lanza RG, Newman L (eds) Phytoremediation. Springer, Cham, pp 383–401

    Google Scholar 

  • Srivastava M, Ma LQ, Santos JAG (2006) Three new arsenic hyperaccumulating ferns. Sci Total Environ 364(1–3):24–31

    CAS  Google Scholar 

  • Srivastava S, Sounderajan S, Udas A, Suprasanna P (2014) Effect of combinations of aquatic plants (Hydrilla, Ceratophyllum, Eichhornia, Lemna and Wolffia) on arsenic removal in field conditions. Ecol Eng 73:297–301

    Google Scholar 

  • Srivastava S, Agrawal SB, Mondal MK (2015) A review on progress of heavy metal removal using adsorbents of microbial and plant origin. Environ Sci Pollut Res 22(20):15386–15415

    Google Scholar 

  • Su H, Fang Z, Tsang PE, Fang J, Zhao D (2016) Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil. Environ Pollut 214:94–100

    CAS  Google Scholar 

  • Subhashini V, Swamy AVVS (2014) Phytoremediation of cadmium and chromium contaminated soils by Cyperus rotundus L. Am Int J Res Sci Technol Eng Math 6:97–101

    Google Scholar 

  • Sun Y, Li Y, Xu Y, Liang X, Wang L (2015) In situ stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite. Appl Clay Sci 105:200–206

    Google Scholar 

  • Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:1–31

    Google Scholar 

  • Terry N, Zayed AM, De Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Biol 51(1):401–432

    CAS  Google Scholar 

  • Tian LY, Yang JY, Huang JH (2015) Uptake and speciation of vanadium in the rhizosphere soils of rape (Brassica juncea L.). Environ Sci Pollut Res 22(12):9215–9223

    CAS  Google Scholar 

  • Upadhyay MK, Gautam A, Mallick S, Srivastava S (2017) A successive application approach for effective utilization of three aquatic plants in arsenic removal. Water Air Soil Pollut 228(2):54

    Google Scholar 

  • USEPA (United State Environmental Protection Agency) (2000) Introduction to phytoremediation.Cincinnati, Ohio EPA 600/R-99/107

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, van der Lelie D (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16(7):765–794

    CAS  Google Scholar 

  • Vogel-Mikuš K, Pongrac P, Kump P, Nečemer M, Regvar M (2006) Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environ Pollut 139(2):362–371

    Google Scholar 

  • Wang J, Feng X, Anderson CW, Xing Y, Shang L (2012) Remediation of mercury contaminated sites–a review. J Hazard Mater 221:1–18

    Google Scholar 

  • Wang L, Ji B, Hu Y, Liu R, Sun W (2017) A review on in situ phytoremediation of mine tailings. Chemosphere 184:594–600

    CAS  Google Scholar 

  • Wang L, Lin H, Dong Y, Li B, He Y (2020a) Effects of endophytes inoculation on rhizosphere and endosphere microecology of Indian mustard (Brassica juncea) grown in vanadium-contaminated soil and its enhancement on phytoremediation. Chemosphere 240:124891

    CAS  Google Scholar 

  • Wang L, Hou D, Cao Y, Ok YS, Tack FM, Rinklebe J, O’Connor D (2020b) Remediation of mercury contaminated soil, water, and air: a review of emerging materials and innovative technologies. Environ Int 134:105281

    CAS  Google Scholar 

  • Wei Z, Van Le Q, Peng W, Yang Y, Yang H, Gu H, Sonne C (2021) A review on phytoremediation of contaminants in air, water and soil. J Hazard Mater 403:123658

    CAS  Google Scholar 

  • Wu SC, Cheung KC, Luo YM, Wong MH (2006) Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140(1):124–135

    CAS  Google Scholar 

  • Yadav KK, Gupta N, Kumar V, Singh JK (2017a) Bioremediation of heavy metals from contaminated sites using potential species: a review. Indian J Environ Prot 37(1):65

    CAS  Google Scholar 

  • Yadav KK, Singh JK, Gupta N, Kumar V (2017b) A review of nanobioremediation technologies for environmental cleanup: a novel biological approach. J Mater Environ Sci 8:740–757

    CAS  Google Scholar 

  • Yadav KK, Gupta N, Kumar A, Reece LM, Singh N, Rezania S, Khan SA (2018) Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Ecol Eng 120:274–298

    Google Scholar 

  • Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66(1):345–351

    CAS  Google Scholar 

  • Yang SX, Liao B, Yang ZH, Chai LY, Li JT (2016a) Revegetation of extremely acid mine soils based on aided phytostabilization: a case study from southern China. Sci Total Environ 562:427–434

    CAS  Google Scholar 

  • Yang Z, Fang Z, Zheng L, Cheng W, Tsang PE, Fang J, Zhao D (2016b) Remediation of lead contaminated soil by biochar-supported nano-hydroxyapatite. Ecotoxicol Environ Saf 132:224–230

    CAS  Google Scholar 

  • Yang J, Yang J, Huang J (2017) Role of co-planting and chitosan in phytoextraction of As and heavy metals by Pteris vittata and castor bean–a field case. Ecol Eng 109:35–40

    Google Scholar 

  • Yang C, Ho Y-N, Inoue C, Chien M-F (2020) Long-term effectiveness of microbe-assisted arsenic phytoremediation by Pteris vittata in field trials. Sci Total Environ 740:140137

    CAS  Google Scholar 

  • Ye S, Zeng G, Wu H, Zhang C, Dai J, Liang J, Zhang C (2017) Biological technologies for the remediation of co-contaminated soil. Crit Rev Biotechnol 37(8):1062–1076

    CAS  Google Scholar 

  • Yılmaz AB, Sangün MK, Yağlıoğlu D, Turan C (2010) Metals (major, essential to non-essential) composition of the different tissues of three demersal fish species from Iskenderun Bay, Turkey. Food Chem 123(2):410–415

    Google Scholar 

  • Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368(2–3):456–464

    CAS  Google Scholar 

  • Yu H, Ling N, Wang T, Zhu C, Wang Y, Wang S, Gao Q (2019) Responses of soil biological traits and bacterial communities to nitrogen fertilization mediate maize yields across three soil types. Soil Tillage Res 185:61–69

    Google Scholar 

  • Zeng X, Ma LQ, Qiu R, Tang Y (2009) Responses of non-protein thiols to Cd exposure in Cd hyperaccumulator Arabis paniculata Franch. Environ Exp Bot 66(2):242–248

    Google Scholar 

  • Zhang R, Zhang N, Fang Z (2018) In situ remediation of hexavalent chromium contaminated soil by CMC-stabilized nanoscale zero-valent iron composited with biochar. Water Sci Technol 77(6):1622–1631

    CAS  Google Scholar 

  • Zurayk R, Sukkariyah B, Baalbaki R, Abi Ghanem D (2002) Ni Phytoaccumulation in Mentha aquatica L. and Mentha sylvestris L. Water Air Soil Pollut 139(1–4):355–364

    CAS  Google Scholar 

  • Zuverza-Mena N, Martínez-Fernández D, Du W, Hernandez-Viezcas JA, Bonilla-Bird N, López-Moreno ML, Gardea-Torresdey JL (2017) Exposure of engineered nanomaterials to plants: insights into the physiological and biochemical responses-a review. Plant Physiol Biochem 110:236–264

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the Department of Environmental Science and Engineering, Indian Institute of Technology (ISM) Dhanbad, for all the valuable support and needful facilities. The authors are also thankful to Mr. Adheesh Vivek for their assistance while framing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The idea for this review article was given by author A (Deep Shikha). Moreover, author A (Deep Shikha) performed the comprehensive literature review and drafted the manuscript, and the drafted manuscript was critically revised by author B (Dr. Prasoon Kumar Singh).

Corresponding author

Correspondence to Deep Shikha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable

Consent to participate

Not applicable

Consent to publish

Not applicable

Additional information

Responsible Editor: Elena Maestri

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shikha, D., Singh, P.K. In situ phytoremediation of heavy metal–contaminated soil and groundwater: a green inventive approach. Environ Sci Pollut Res 28, 4104–4124 (2021). https://doi.org/10.1007/s11356-020-11600-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-11600-7

Keywords

Navigation