Skip to main content

Advertisement

Log in

Influence of Cd toxicity on subcellular distribution, chemical forms, and physiological responses of cell wall components towards short-term Cd stress in Solanum nigrum

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Solanum nigrum is a well-documented cadmium (Cd) hyperaccumulator; however, its Cd-induced tolerance capability and detoxification mechanism remain elusive. Hence, a short-term hydroponic experiment was performed in a multiplane glasshouse to determine the influence of Cd toxicity on subcellular distribution, chemical forms, and the physiological responses of cell wall towards Cd stress in a 4-week-old plant. The experiment was conducted following completely randomized design (CRD) with five treatments (n = 4 replicates). The results showed that Cd stress showed dose-dependent response towards growth inhibition. The subcellular distribution of Cd in S. nigrum was in the order of cell wall > soluble fractions > organelles, and Cd was predominantly extracted by 1 M NaCl (29.87~43.66%). The Cd contents in different plant tissues and cell wall components including pectin, hemicellulose 1 (HC1), hemicellulose 2 (HC2), and cellulose were increased with the increase in Cd concentrations; however, the percentage of Cd concentration decreased in pectin and cellulose. Results of the polysaccharide components such as uronic acid, total sugar contents, and pectin methylesterase (PME) activity showed Cd-induced dose-dependent increase relative to exposure Cd stress. The pectin methylesterase (PME) activity was significantly (p < 0.05) enhanced by 125.78% at 75 μM Cd in root, 105.78% and 73.63% at 100 μM Cd in stem and leaf, respectively. In addition, the esterification, amidation, and pectinase treatment of cell wall and Fourier transform infrared spectroscopy (FTIR) assay exhibited many functional groups that were involved in cell wall retention Cd, especially on carboxyl and hydroxyl groups of cell wall components that indicated that the –OH and –COOH groups of S. nigrum cell wall play a crucial role in Cd fixation. In summary, results of the current study will add a novel insight to understand mobilization/immobilization as well as detoxification mechanism of cadmium in S. nigrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881

    Article  CAS  Google Scholar 

  • Berni R, Luyckx M, Xu X, Legay S, Sergeant K, Hausman J-F, Lutts S, Cai G, Guerriero G (2018) Reactive oxygen species and heavy metal stress in plants: Impact on the cell wall and secondary metabolism. Environ Exp Bot 161:98–106

    Article  CAS  Google Scholar 

  • Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54:484–489

    Article  CAS  Google Scholar 

  • Bosch A, Serra D, Prieto C, Schmitt J, Naumann D, Yantorno O (2006) Characterization of Bordetella pertussis growing as biofilm by chemical analysis and FT-IR spectroscopy. Appl Microbiol Biotechnol 71:736–747

    Article  CAS  Google Scholar 

  • Cao DJ, Yang X, Geng G, Wan XC, Ma RX, Zhang Q, Liang YG (2018) Absorption and subcellular distribution of cadmium in tea plant (Camellia sinensis cv. "Shuchazao"). Environ Sci Pollut Res 25:15357–15367

    Article  CAS  Google Scholar 

  • Chen GC, Liu YQ, Wang RM, Zhang JF, Owens G (2013) Cadmium adsorption by willow root: the role of cell walls and their subfractions. Environ Sci Pollut Res 20:5665–5672

    Article  CAS  Google Scholar 

  • Cheng M, Wang P, Kopittke PM, Wang A, Sale PWG, Tang C (2016) Cadmium accumulation is enhanced by ammonium compared to nitrate in two hyperaccumulators, without affecting speciation. J Exp Bot 67(17):5041–5050

    Article  CAS  Google Scholar 

  • Chudzik B, Szczuka E, Leszczuk A, Strubińska J (2018) Modification of pectin distribution in sunflower (Helianthus annuus L.) roots in response to lead exposure. Environ Exp Bot 155:251–259

    Article  CAS  Google Scholar 

  • Dai M, Liu W, Hong H, Lu H, Liu J, Jia H, Yan C (2018) Exogenous phosphorus enhances cadmium tolerance by affecting cell wall polysaccharides in two mangrove seedlings Avicennia marina (Forsk.) Vierh and Kandelia obovata (S., L.) Yong differing in cadmium accumulation. Mar Pollut Bull 126:86–92

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    Article  CAS  Google Scholar 

  • El-Nawawi SA, Heikal YA (1995) Production of a low ester pectin by de-esterification of high ester citrus pectin. Carbohydr Polym 27(3):191–195

    Article  CAS  Google Scholar 

  • Fu X, Dou C, Chen Y, Chen X, Shi J, Yu M, Xu J (2011) Subcellular distribution and chemical forms of cadmium in Phytolacca americana L. J Hazard Mater 186:103–107

    Article  CAS  Google Scholar 

  • Gutsch A, Sergeant K, Keunen E, Prinsen E, Guerriero G, Renaut J, Hausman JF, Cuypers A (2019) Does long-term cadmium exposure influence the composition of pectic polysaccharides in the cell wall of Medicago sativa stems? BMC Plant Biol 19:271

    Article  CAS  Google Scholar 

  • Han R, Dai H, Zhan J, Wei S (2019) Clean extracts from accumulator efficiently improved Solanum nigrum L. accumulating Cd and Pb in soil. J Clean Prod 239:118005

  • Hayat K, Menhas S, Bundschuh J, Zhsou P, Niazi NK, Amna HA, Hayat S, Ali H, Wang J, Khan AA (2020) Plant growth promotion and enhanced uptake of Cd by combinatorial application of Bacillus pumilus and EDTA on Zea mays L. Int J Phytoremediat 23:1–3

    Google Scholar 

  • He S, Yang X, He Z, Baligar VC (2017) Morphological and physiological responses of plants to cadmium toxicity: a review. Pedosphere 27(3):421–438

    Article  CAS  Google Scholar 

  • Houston K, Tucker MR, Chowdhury J, Shirley N, Little A (2016) The plant cell wall: a complex and dynamic structure as revealed by the responses of genes under stress conditions. Front Plant Sci 7:984

    Article  Google Scholar 

  • Huang B, Xin J, Dai H, Liu A, Zhou W, Yi Y, Liao K (2015) Root morphological responses of three hot pepper cultivars to Cd exposure and their correlations with Cd accumulation. Environ Sci Pollut Res 22:1151–1159

    Article  CAS  Google Scholar 

  • Jia H, Wang X, Wei T, Zhou R, Muhammad H, Hua L, Ren X, Guo J, Ding Y (2019) Accumulation and fixation of Cd by tomato cell wall pectin under Cd stress. Environ Exp Bot 167:103829

    Article  CAS  Google Scholar 

  • Khan AR, Waqas M, Ullah I, Khan AL, Khan MA, Lee I-J, Shin J-H (2017) Culturable endophytic fungal diversity in the cadmium hyperaccumulator Solanum nigrum L. and their role in enhancing phytoremediation. Environ Exp Bot 135:126–135

  • Krzesłowska M (2011) The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiol Plant 33(1):35–51

  • Krzeslowska M, Rabeda I, Basinska A, Lewandowski M, Mellerowicz EJ, Napieralska A, Samardakiewicz S, Wozny A (2016) Pectinous cell wall thickenings formation - a common defense strategy of plants to cope with Pb. Environ Pollut 214:354–361

    Article  CAS  Google Scholar 

  • Krzesłowska M, Timmers ACJ, Mleczek M, Niedzielski P, Rabęda I, Woźny A, Goliński P (2019) Alterations of root architecture and cell wall modifications in Tilia cordata Miller (Linden) growing on mining sludge. Environ Pollut 248:247–259

    Article  CAS  Google Scholar 

  • Lai H-Y (2015) Subcellular distribution and chemical forms of cadmium in Impatiens walleriana in relation to its phytoextraction potential. Chemosphere 138:370–376

    Article  CAS  Google Scholar 

  • Li TQ, Tao Q, Shohag MJI, Yang XE, Sparks DL, Liang YC (2015) Root cell wall polysaccharides are involved in cadmium hyperaccumulation in Sedum alfredii. Plant Soil 389:387–399

    Article  CAS  Google Scholar 

  • Li H, Luo N, Zhang LJ, Zhao HM, Li YW, Cai QY, Wong MH, Mo CH (2016) Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice? Sci Total Environ 571:1183–1190

    Article  CAS  Google Scholar 

  • Li X, Cui X, Zhang X, Liu W, Cui Z (2020) Combined toxicity and detoxification of lead, cadmium and arsenic in Solanum nigrum L. J Hazard Mater 389:121874

    Article  CAS  Google Scholar 

  • Liu TT, Peng C, Wang M, Duan D, SHI J (2014) Mechanism of fixation and adsorption of copper on root cell wall of Elsholtzia splendens. Acta Sci Circumst 34(2):514–523

    Google Scholar 

  • Liu Y, Lv H, Yang N, Li Y, Liu B, Rensing C, Dai J, Fekih IB, Wang L, Mazhar SH, Kehinde SB, Xu J, Su J, Zhang R, Wang R, Fan Z, Feng R (2019) Roles of root cell wall components and root plaques in regulating elemental uptake in rice subjected to selenite and different speciation of antimony. Environ Exp Bot 163:36–44

    Article  CAS  Google Scholar 

  • Loix C, Huybrechts M, Vangronsveld J, Gielen M, Keunen E, Cuypers A (2017) Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. Front Plant Sci 8:1867

    Article  Google Scholar 

  • Meyer CL, Juraniec M, Huguet S, Chaves-Rodriguez E, Salis P, Isaure MP, Goormaghtigh E, Verbruggen N (2015) Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri. J Exp Bot 66:3215–3227

  • Novakovic L, Guo T, Bacic A, Sampathkumar A, Johnson KL (2018) Hitting the wall-sensing and signaling pathways involved in plant cell wall remodeling in response to abiotic stress. Plants (Basel) 7:89

    Article  CAS  Google Scholar 

  • Paës G (2014) Fluorescent probes for exploring plant cell wall deconstruction: a review. Molecules 19:9380–9402

    Article  CAS  Google Scholar 

  • Pattathil S, Ingwers MW, Aubrey DP, Li Z, Dahlen J (2017) A quantitative method for analyzing glycome profiles of plant cell walls. Carbohydr Res 448:128–135

    Article  CAS  Google Scholar 

  • Pourghasemian N, Landberg T, Ehsanzadeh P, Greger M (2019) Different response to Cd stress in domesticated and wild safflower (Carthamus spp.). Ecotox Environ Safe 171:321–328

    Article  CAS  Google Scholar 

  • Qiu W, Song X, Han X, Liu M, Qiao G, Zhuo R (2018) Overexpression of Sedum alfredii cinnamyl alcohol dehydrogenase increases the tolerance and accumulation of cadmium in Arabidopsis. Environ Exp Bot 155:566–577

    Article  CAS  Google Scholar 

  • Rehman MZU, Rizwan M, Ali S, Ok YS, Ishaque W, Saifullah NMF, Akmal F, Waqar M (2017) Remediation of heavy metal contaminated soils by using Solanum nigrum: A review. Ecotox Environ Safe 143:236–248

    Article  CAS  Google Scholar 

  • Satapute P, Paidi MK, Kurjogi M, Jogaiah S (2019) Physiological adaptation and spectral annotation of Arsenic and Cadmium heavy metal-resistant and susceptible strain Pseudomonas taiwanensis. Environ Pollut 251:555–563

    Article  CAS  Google Scholar 

  • Schmohl N, Pilling J, Fisahn J, Horst WJ (2000) Pectin methylesterase modulates aluminium sensitivity in Zea mays and Solanum tuberosum. Physiol Plant 109(4):419–427

    Article  CAS  Google Scholar 

  • Shi YZ, Zhu XF, Wan JX, Li GX, Zheng SJ (2015) Glucose alleviates cadmium toxicity by increasing cadmium fixation in root cell wall and sequestration into vacuole in Arabidopsis. J Integr Plant Biol 57:830–837

    Article  CAS  Google Scholar 

  • Thakur S, Singh L, Wahid ZA, Siddiqui MF, Atnaw SM, Din MFM (2016) Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environ Monit Assess 188:206

    Article  Google Scholar 

  • Tian S, Xie R, Wang H, Hu Y, Hou D, Liao X, Brown PH, Yang H, Lin X, Labavitch JM, Lu L, (2017) Uptake, sequestration and tolerance of cadmium at cellular levels in the hyperaccumulator plant species Sedum alfredii. J Exp Bot 68, 2387–2398

  • Tiwari S, Lata C (2018) Heavy metal stress, signaling, and tolerance due to plant-associated microbes: an overview. Front Plant Sci 9:12

    Article  Google Scholar 

  • Vaahtera L, Schulz J, Hamann T (2019) Cell wall integrity maintenance during plant development and interaction with the environment. Nat Plants 5:924–932

    Article  Google Scholar 

  • Vatehova-Vivodova Z, Kollarova K, Malovikova A, Liskova D (2018) Maize shoot cell walls under cadmium stress. Environ Sci Pollut Res 25:22318–22322

    Article  CAS  Google Scholar 

  • Wang M, Duan DC, Xu C, Yu MG, Shi JY (2015) Adsorption ability of cell wall (CW) components in roots of Tea Plant (Camellia sinensis L.) to Pb and FTIR spectra of their functional groups. Acta Ecol Sin 35(6):1743–1751

    Google Scholar 

  • Wang QY, Liu JS, Hu B (2016) Integration of copper subcellular distribution and chemical forms to understand copper toxicity in apple trees. Environ Exp Bot 123:125–131

    Article  CAS  Google Scholar 

  • Wang XH, Wang Q, Nie ZW, He LY, Sheng XF (2018) Ralstonia eutropha Q2-8 reduces wheat plant above-ground tissue cadmium and arsenic uptake and increases the expression of the plant root cell wall organization and biosynthesis-related proteins. Environ Pollut 242:1488–1499

    Article  CAS  Google Scholar 

  • Wang J, Chen X, Chi Y, Chu S, Hayat K, Zhi Y, Hayat S, Terziev D, Zhang D, Zhou P (2020) Optimization of NPK fertilization combined with phytoremediation of cadmium contaminated soil by orthogonal experiment. Ecotoxicol Environ Saf 189:109997

    Article  CAS  Google Scholar 

  • Wei SH, Wang SS, Li YM, Zhu JG (2013) Root system responses of hyperaccumulator Solanum nigrum L. to Cd. J Soils Sediments 13:1069–1074

    Article  CAS  Google Scholar 

  • Wei RF, Guo QJ, Yu GR, Kong J, Li SL, Song ZL, Hu J, Tian LY, Han XK, Okoli CP (2018) Stable isotope fractionation during uptake and translocation of cadmium by tolerant Ricinus communis and hyperaccumulator Solanum nigrum as influenced by EDTA. Environ Pollut 236:634–644

    Article  CAS  Google Scholar 

  • Wu Z, Liu S, Zhao J, Wang F, Du Y, Zou S, Li H, Wen D, Huang Y (2017) Comparative responses to silicon and selenium in relation to antioxidant enzyme system and the glutathione-ascorbate cycle in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress. Environ Exp Bot 133:1–11

    Article  CAS  Google Scholar 

  • Xin JP, Zhang Y, Tian RN (2018) Tolerance mechanism of Triarrhena saccharifiora (Maxim.) Nakai. seedlings to lead and cadmium: translocation, subcellular distribution, chemical forms and variations in leaf ultrastructure. Ecotox Environ Safe 165:611–621

    Article  CAS  Google Scholar 

  • Xiong J, An L, Lu H, Zhu C (2009) Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta 230:755–765

    Article  CAS  Google Scholar 

  • Xu J, Bao JQ (2015) Adsorption and fixation mechanism of cadmium on celery (Apium graveolens L.) root cell wall and the analysis of FTIR spectra. Acta Sci Circumst 35(8):2605–2612

  • Xu SS, Lin SZ, Lai ZX (2015) Cadmium impairs iron homeostasis in Arabidopsis thaliana by increasing the polysaccharide contents and the iron-binding capacity of root cell walls. Plant Soil 392:71–85

    Article  CAS  Google Scholar 

  • Yang JL, Li YY, Zhang YJ, Zhang SS, Wu YR, Wu P, Zheng SJ (2008) Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex. Plant Physiol 146:602–611

    Article  CAS  Google Scholar 

  • Yang JL, Zhu XF, Peng YX, Zheng C, Li GX, Liu Y, Shi YZ, Zheng SJ (2011) Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in arabidopsis. Plant Physiol 155:1885–1892

    Article  CAS  Google Scholar 

  • Yang L, Zeng J, Wang P, Zhu J (2018) Sodium hydrosulfide alleviates cadmium toxicity by changing cadmium chemical forms and increasing the activities of antioxidant enzymes in salix. Environ Exp Bot 156:161–169

    Article  CAS  Google Scholar 

  • Yang Y, Xiong J, Tao L, Cao Z, Tang W, Zhang J, Yu X, Fu G, Zhang X, Lu Y (2020) Regulatory mechanisms of nitrogen (N) on cadmium (Cd) uptake and accumulation in plants: a review. Sci Total Environ 708:135186

    Article  CAS  Google Scholar 

  • Yu Y, Zhou X, Zhu Z, Zhou K (2018) Sodium hydrosulfide mitigates cadmium toxicity by promoting cadmium retention and inhibiting its translocation from roots to shoots in Brassica napus. J Agric Food Chem 67:433–440

    Article  CAS  Google Scholar 

  • Zhan J, Huang H, Yu H, Zhang X, Zheng Z, Wang Y, Liu T, Li T (2019) The combined effects of Cd and Pb enhanced metal binding by root cell walls of the phytostabilizer Athyrium wardii (Hook.). Environ Pollut 258:113663

    Article  CAS  Google Scholar 

  • Zhang X-F, Hu Z-H, Yan T-X, Lu R-R, Peng C-L, Li S-S, Jing Y-X (2019a) Arbuscular mycorrhizal fungi alleviate Cd phytotoxicity by altering Cd subcellular distribution and chemical forms in Zea mays. Ecotox Environ Safe 171:352–360

    Article  CAS  Google Scholar 

  • Zhang H, Luo JW, Hu HY, Cao S, Zhou CF, Hou XL (2019b) Cadmium tolerance mechanism of Conyza canadensis based on cell wall adsorption and fixation characteristics. J Agro-Environ Sci 38(5):980–990

    Google Scholar 

  • Zhao Y, Hu C, Wu Z, Liu X, Cai M, Jia W, Zhao X (2019a) Selenium reduces cadmium accumulation in seed by increasing cadmium retention in root of oilseed rape (Brassica napus L.). Environ Exp Bot 158:161–170

    Article  CAS  Google Scholar 

  • Zhao Y, Shang D, Ning J, Zhai Y, Sheng X, Ding H (2019b) Subcellular distribution and chemical forms of lead in the red algae, Porphyra yezoensis. Chemosphere 227:172–178

    Article  CAS  Google Scholar 

  • Zhong H, Lauchli A (1993) Changes of cell wall composition and polymer size in primary roots of cotton seedlings under high salinity. J Exp Bot 44(4):773–778

    Article  CAS  Google Scholar 

  • Zhu XF, Wang ZW, Dong F, Lei GJ, Shi YZ, Li GX, Zheng SJ (2013) Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls. J Hazard Mater 263:398–403

    Article  CAS  Google Scholar 

  • Zhu CQ, Cao XC, Zhu LF, Hu WJ, Hu AY, Bai ZG, Zhong C, Sun LM, Liang QD, Huang J, Yang SX, Zhang JH, Jin QY (2018) Ammonium mitigates Cd toxicity in rice (Oryza sativa) via putrescinedependent alterations of cell wall composition. Plant Physiol Biochem 132:189–201

    Article  CAS  Google Scholar 

  • Zouari M, Elloumi N, Ahmed CB, Delmail D, Rouina BB, Abdallah FB, Labrousse P (2016) Exogenous proline enhances growth, mineral uptake, antioxidant defense, and reduces cadmium-induced oxidative damage in young date palm (Phoenix dactylifera L.). Ecol Eng 86:202–209f

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Nature Science Foundations of China [31702003, 31902105], National Key Research and Development Program [2016YFD0800807, 2016YFD0800803], Young Elite Scientists Sponsorship Program by CAST [2017QNRC001], Sponsored by “Chenguang Program” supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission [17CG07], Project funded by China Postdoctoral Science Foundation [2019M651505].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Pei Zhou, Dan Zhang; Methodology: Yuee Zhi; formal analysis and investigation: Juncai Wang, Xunfeng Chen, Shaohua Chu; writing—original draft preparation: Juncai Wang, Xunfeng Chen, Shaohua Chu; writing—review and editing: Juncai Wang, Yaowei Chi, Kashif Hayat; funding acquisition: Pei Zhou; resources: Pei Zhou; supervision: Dan Zhang

Corresponding authors

Correspondence to Dan Zhang or Pei Zhou.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Informed consent was obtained from all authors included in the study.

Consent for publication

Informed consent has been obtained from all participants included in the analyzed studies.

Competing interest

The authors declare that they have no competing interest.

Additional information

Responsible editor: Gangrong Shi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Chen, X., Chu, S. et al. Influence of Cd toxicity on subcellular distribution, chemical forms, and physiological responses of cell wall components towards short-term Cd stress in Solanum nigrum. Environ Sci Pollut Res 28, 13955–13969 (2021). https://doi.org/10.1007/s11356-020-11505-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-11505-5

Keywords

Navigation