Skip to main content
Log in

Effects of zinc oxide nanoparticles on arsenic stress in rice (Oryza sativa L.): germination, early growth, and arsenic uptake

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

A Correction to this article was published on 19 April 2021

This article has been updated

Abstract

This study describes the role of zinc oxide nanoparticles (ZnO NPs) in alleviating arsenic (As) stress in rice (Oryza sativa) germination and early seedling growth. Seeds of rice were primed with different concentrations (10, 20, 50, 100, and 200 mg L−1) of ZnO NPs and As (0, and 2 mg L−1) for 12 days in petri dishes. Two milligrams per liter of As treatment represented a stress condition, which was evidenced by germination rate, seedling length, seedling dry weight, chlorophyll, superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) content of rice shoot. ZnO NPs amendment (10–100 mg L−1) increased the germination rate (2.3–8.9%), shoot weight (18.2–42.4%), root weight (5.2–23.9%), and chlorophyll content (3.5–40.1%), while elevated the SOD (2.2–22.8%) and CAT (7.2–60.7%) activities and reduced the MDA content (17.5–30.8%). As concentrations were significantly decreased by 8.4–72.3% and 10.2–56.6%, respectively, in rice roots and shoots with ZnO NPs amendment (10–200 mg L−1) by the As adsorption of ZnO NPs and promoted biomass of rice. All the amendments improved the Zn concentrations in rice shoots and roots. Overall, ZnO NPs provide effective resistance to arsenic toxicity by increasing germination, biomass, and nutrients of Zn and decreasing As uptake in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  • Ali S, Rizwan M, Noureen S, Anwar S, Ali B, Naveed M, Abd Allah EF, Alqarawi AA, Ahmad P (2019) Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant. Environ Sci Pollut Res Int 26:11288–11299

    Article  CAS  Google Scholar 

  • Bashir A, Rizwan M, Ali S, Rehman MZU, Ishaque W, Riaz MA, Maqbool A (2018) Effect of foliar-applied iron complexed with lysine on growth and cadmium (Cd) uptake in rice under Cd stress. Environ Sci Pollut R 25:20691–20699

    Article  CAS  Google Scholar 

  • Cai Y, Xu W, Wang M, Chen W, Li X, Li Y, Cai Y (2019) Mechanisms and uncertainties of Zn supply on regulating rice Cd uptake. Environ Pollut 253:959–965

    Article  CAS  Google Scholar 

  • Chen J, Dou R, Yang Z, You T, Gao X, Wang L (2018) Phytotoxicity and bioaccumulation of zinc oxide nanoparticles in rice (Oryza sativa L.). Plant Physiol Biochem 130:604–612

    Article  CAS  Google Scholar 

  • Conway JR, Adeleye AS, Gardea-Torresdey J, Keller AA (2015) Aggregation, dissolution, and transformation of copper nanoparticles in natural waters. Environ Sci Technol 49:2749–2756

    Article  CAS  Google Scholar 

  • Dannenberg GD, Funck GD, da Silva WP, Fiorentini AM (2019) Essential oil from pink pepper (Schinus terebinthifolius Raddi): chemical composition, antibacterial activity and mechanism of action. Food Control 95:115–120

    Article  CAS  Google Scholar 

  • Huang Q, Zhou S, Lin L, Huang Y, Li F, Song Z (2018) Effect of nanomaterials on arsenic volatilization and extraction from flooded soils. Environ Pollut 239:118–128

    Article  CAS  Google Scholar 

  • Hussain A, Ali S, Rizwan M, Zia Ur Rehman M, Javed MR, Imran M, Chatha SAS, Nazir R (2018) Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environ Pollut 242:1518–1526

    Article  CAS  Google Scholar 

  • Khan ZS, Rizwan M, Hafeez M, Ali S, Javed MR, Adrees M (2019) The accumulation of cadmium in wheat (Triticum aestivum) as influenced by zinc oxide nanoparticles and soil moisture conditions. Environ Sci Pollut Res Int 26:19859–19870

    Article  CAS  Google Scholar 

  • Lata S, Samadder SR (2016) Removal of arsenic from water using nano adsorbents and challenges: a review. J Environ Manag 166:387–406

    Article  CAS  Google Scholar 

  • Li C, Feng S, Shao Y, Jiang L, Lu X, Hou X (2007) Effects of arsenic on seed germination and physiological activities of wheat seedlings. J Environ Sci 19:725–732

    Article  CAS  Google Scholar 

  • Liu RQ, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  Google Scholar 

  • Liu WJ, McGrath SP, Zhao FJ (2013) Silicon has opposite effects on the accumulation of inorganic and methylated arsenic species in rice. Plant Soil 376:423–431

    Article  Google Scholar 

  • Liu X, Zhang S, Shan X, Zhu YG (2005) Toxicity of arsenate and arsenite on germination, seedling growth and amylolytic activity of wheat. Chemosphere 61:293–301

    Article  CAS  Google Scholar 

  • Ma X, Geisler-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061

    Article  CAS  Google Scholar 

  • Mahajan P, Dhoke SK, Khanna AS (2011) Effect of Nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J Nanotechno 2011:1–7

  • Milani N, McLaughlin MJ, Stacey SP, Kirby JK, Hettiarachchi GM, Beak DG, Cornelis G (2012) Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. J Agric Food Chem 60:3991–3998

    Article  CAS  Google Scholar 

  • Munir T, Rizwan M, Kashif M, Shahzad A, Ali S, Amin N, Zahid R, Alam MFE, Imran M (2018) Effect of zinc oxide nanoparticles on the growth and Zn uptake in wheat by seed priming method. Dig J Nanomater Bios 13:315–323

  • Rizwan M, Ali S, Ali B, Adrees M, Arshad M, Hussain A, Zia Ur Rehman M, Waris AA (2019a) Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 214:269–277

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Zia Ur Rehman M, Adrees M, Arshad M, Qayyum MF, Ali L, Hussain A, Chatha SAS, Imran M (2019b) Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. Environ Pollut 248:358–367

    Article  CAS  Google Scholar 

  • Shahid MA, Balal RM, Khan N, Zotarelli L, Liu GD, Sarkhosh A, Fernández-Zapata JC, Martínez Nicolás JJ, Garcia-Sanchez F (2019) Selenium impedes cadmium and arsenic toxicity in potato by modulating carbohydrate and nitrogen metabolism. Ecotox Environ Safe 180:588–599

    Article  CAS  Google Scholar 

  • Sharifan H, Wang XX, Guo BL, Ma XM (2018) Investigation on the modification of physicochemical properties of cerium oxide nanoparticles through adsorption of Cd and As(III)/As(V). ACS Sustain Chem Eng 6:13454–13461

    Article  CAS  Google Scholar 

  • Shri M, Kumar S, Chakrabarty D, Trivedi PK, Mallick S, Misra P, Shukla D, Mishra S, Srivastava S, Tripathi RD, Tuli R (2009) Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotox Environ Safe 72:1102–1110

    Article  CAS  Google Scholar 

  • Singh N, Singh SP, Gupta V, Yadav HK, Ahuja T, Tripathy SS, Rashmi (2013) A process for the selective removal of arsenic from contaminated water using acetate functionalized zinc oxide nanomaterials. Environ Prog Sustain Energy 32:1023–1029

    Article  CAS  Google Scholar 

  • Su YH, McGrath SP, Zhao FJ (2010) Rice is more efficient in arsenite uptake and translocation than wheat and barley. Plant Soil 328:27–34

    Article  CAS  Google Scholar 

  • Venkatachalam P, Jayaraj M, Manikandan R, Geetha N, Rene ER, Sharma NC, Sahi SV (2017a) Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: a physiochemical analysis. Plant Physiol Biochem 110:59–69

    Article  CAS  Google Scholar 

  • Venkatachalam P, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geetha N, Muralikrishna K, Bhattacharya RC, Tiwari M, Sharma N, Sahi SV (2017b) Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Biochem 110:118–127

    Article  CAS  Google Scholar 

  • Wan Y, Camara AY, Huang Q, Yu Y, Wang Q, Li H (2018) Arsenic uptake and accumulation in rice (Oryza sativa L.) with selenite fertilization and water management. Ecotoxicol Environ Saf 156:67–74

    Article  CAS  Google Scholar 

  • Wang P, Menzies NW, Lombi E, McKenna BA, Johannessen B, Glover CJ, Kappen P, Kopittke PM (2013) Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata). Environ Sci Technol 47:13822–13830

    Article  CAS  Google Scholar 

  • Wang X, Sun W, Zhang S, Sharifan H, Ma X (2018) Elucidating the effects of cerium oxide nanoparticles and zinc oxide nanoparticles on arsenic uptake and speciation in rice ( Oryza sativa) in a hydroponic system. Environ Sci Technol 52:10040–10047

    Article  CAS  Google Scholar 

  • Wang X, Sun W, Ma X (2019) Differential impacts of copper oxide nanoparticles and copper(II) ions on the uptake and accumulation of arsenic in rice (Oryza sativa). Environ Pollut 252:967–973

    Article  CAS  Google Scholar 

  • Wissuwa M, Ismail AM, Yanagihara S (2006) Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance. Plant Physiol 142:731–741

    Article  CAS  Google Scholar 

  • Xie YP, He YP, Irwin PL, Jin T, Shi XM (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against campylobacter jejuni. Appl Environ Microbiol 77:2325–2331

    Article  CAS  Google Scholar 

  • Ye W, Guo G, Wu F, Fan T, Lu H, Chen H, Li X, Ma Y (2018) Absorption, translocation, and detoxification of Cd in two different castor bean (Ricinus communis L.) cultivars. Environ Sci Pollut Res Int 25:28899–28906

    Article  CAS  Google Scholar 

  • Zhang M, Zhao Q, Xue P, Zhang S, Li B, Liu W (2017) Do Si/As ratios in growth medium affect arsenic uptake, arsenite efflux and translocation of arsenite in rice (Oryza sativa)? Environ Pollut 229:647–654

    Article  CAS  Google Scholar 

  • Zhao L, Zhang H, Wang J, Tian L, Li F, Liu S, Peralta-Videa JR, Gardea-Torresdey JL, White JC, Huang Y, Keller A, Ji R (2019) C60 Fullerols enhance copper toxicity and alter the leaf metabolite and protein profile in cucumber. Environ Sci Technol 53:2171–2180

    Article  CAS  Google Scholar 

Download references

Funding

We acknowledge the Fundamental Research Funds for the Central Universities (2019FZJD007), Provincial Natural Science Foundation of Anhui, and the Open Fund of Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention (FECPP201904).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianjin Tang or Wenling Ye.

Additional information

Responsible Editor: Gangrong Shi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3238 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Fang, Q., Yan, S. et al. Effects of zinc oxide nanoparticles on arsenic stress in rice (Oryza sativa L.): germination, early growth, and arsenic uptake. Environ Sci Pollut Res 27, 26974–26981 (2020). https://doi.org/10.1007/s11356-020-08965-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-08965-0

Keywords

Navigation