Skip to main content

Advertisement

Log in

Urbanization increases carbon concentration and pCO2 in subtropical streams

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Urbanization growth may alter the hydrologic conditions and processes driving carbon concentrations in aquatic systems through local changes in land use. Here, we explore dissolved carbon concentrations (DIC and DOC) along urbanization gradient in Santa Catarina Island to evaluate potential increase of CO2 in streams. Additionally, we assessed chemical, physical, and biotic variables to evaluate direct and indirect effects of urbanization in watersheds. We defined 3 specific urbanization levels: high (> 15% urbanized area), medium (15–5% urbanized area), and low (< 5% urbanized area) urbanization. The results showed that local changes due to growth of urban areas into watersheds altered the carbon concentrations in streams. DOC and DIC showed high concentrations in higher urbanization levels. The watersheds with an urban building area above 5% showed pCO2 predominantly above the equilibrium with the atmosphere. These findings reveal that local modifications in land use may contribute to changes in global climate by altering the regional carbon balance in streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Åberg J, Wallin MB (2014) Evaluating a fast headspace method for measuring DIC and subsequent calculation of pCO2 in freshwater systems. Inland Waters 4(2):157–166. https://doi.org/10.5268/IW-4.2.694

    Article  CAS  Google Scholar 

  • Abril G, Bouillon S, Darchambeau F, Teodoru CR, Marwick T, Tamooh F, Omengo FO, Geeraert N, Deirmendjian L, Polsenaere P, Borges AV (2015) Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences 12:67–78

    CAS  Google Scholar 

  • Abril G, Martinez J-M, Artigas LF, Moreira-Turcq P, Benedetti MF, Vidal L, Meziane T, Kim J-H, Bernardes MC, Savoye N, Deborde J, Albéric P, Souza MFL, Souza EL, Roland F (2014) Amazon River carbon dioxide outgassing fuelled by wetlands. Nature 505:395–398. https://doi.org/10.1038/nature12797

    Article  CAS  Google Scholar 

  • Andrade TMB, Camargo PC, Silva DML, Piccolo MC, Vieira SA, Alves L, Joly CA, Martinelli LA (2011) Dynamics of dissolved forms of carbon and inorganic nitrogen in small watersheds of the coastal Atlantic Forest in Southeast Brazil. Water Air Soil Pollut 214:393–408

    CAS  Google Scholar 

  • APHA – American Public Health Association. Standard Methods for the Examination of Water and Wastewater. 22. ed., 1496 p. 2012

  • Aufdenkampe AK, Mayorga E, Raymond PA, Melack JM, Doney SC, Alin SR, Aalto RE, Yoo K (2011) Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Environ 9(1):53–60

    Google Scholar 

  • Barnes RT, Raymond PA (2009) The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds. Chem Geol 266:327–336

    CAS  Google Scholar 

  • Barth JAC, Cronin AA, Dunlop J, Kalin RM (2003) Influence of carbonates on the riverine carbon cycle in an anthropogenically dominated catchment basin: evidence from major elements and stable carbon isotopes in the Lagan River (N. Ireland). Chem Geol 200:203–216

    CAS  Google Scholar 

  • Bodmer P, Heinz M, Pusch M, Singer G, Premke K (2016) Carbon dynamics and their link to dissolved organic matter quality across contrasting stream ecosystems. Sci Total Environ 553:574–586

    CAS  Google Scholar 

  • Bolker BM (2008) Ecological models and data in R. Princeton University Press, Princeton

    Google Scholar 

  • Booth DB (2005) Challenges and prospects for restoring urban streams: a perspective from the Pacific northwest of North America. J N Am Benthol Soc 24(3):724–737

    Google Scholar 

  • Booth DB, Roy AH, Smith B, Capps KA (2016) Global perspectives on the urban stream syndrome. Freshwater Sci 35(1):412–420

    Google Scholar 

  • Brasher AMD (2003) Impacts of human disturbances on biotic communities in Hawaiian streams. BioScience 53:11

    Google Scholar 

  • Campeau A, Del Giorgio PA (2014) Patterns in CH4 and CO2 concentrations across boreal rivers: major drivers and implications for fluvial greenhouse emissions under climate change scenarios. Glob Chang Biol 20:1075–1088. https://doi.org/10.1111/gcb.12479

    Article  Google Scholar 

  • Campeau A, Wallin MB, Giesler R, Lofgren S, Morth CM, Schiff S, Venkiteswaran JJ, Bishop K (2017) Multiple sources and sinks of dissolved inorganic carbon across Swedish streams, refocusing the lens of stable C isotopes. Sci Rep 7(1):9158. https://doi.org/10.1038/s41598-017-09049-9

    Article  CAS  Google Scholar 

  • Cardoso SJ, Enrich-Prast A, Pace ML, Roland F (2014) Do models of organic carbon mineralization extrapolate to warmer tropical sediments? Limnol Oceanogr 59:48–54

    CAS  Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568

    Google Scholar 

  • Cole J (2013) Freshwater in flux. Nat Geosci 6(1):13–14. https://doi.org/10.1038/ngeo1696

    Article  CAS  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10(1):171–184

    CAS  Google Scholar 

  • Conover WJ (1999) Practical nonparametric statistical, 3rd edn. John Wiley & Sons Inc., New York, pp 428–433

    Google Scholar 

  • Cooper SD, Lake PS, Sabater S, Melack JM, Sabo JL (2013) The effects of land use changes on streams and rivers in Mediterranean climates. Hydrobiologia 719:383–425

    CAS  Google Scholar 

  • Crawley MJ (2005) Statistics: an introduction using R. 342. John Wiley and Sons, Chichester

    Google Scholar 

  • Daniel MHB, Montebelo AA, Bernardes MC, Ometto JPHB, Camargo PB, Krusche AV, Ballester MV, Victoria RL, Martinelli LA (2002) Effects of urban sewage on dissolved oxygen, dissolved inorganic and organic carbon, and electrical conductivity of small streams along a gradient of urbanization in the Piracicaba River basin. Water Air Soil Pollut 136:189–206

    CAS  Google Scholar 

  • Dawson JJC, Bakewell C, Billett MF (2001) Is in-stream processing an important control on spatial changes in headwater carbon fluxes? Sci Total Environ 265(153):167

    Google Scholar 

  • Degens ET, Kempe S, Richey JE (eds) (1991) Biogeochemistry of major worm Rivers, 356 pp SCOPE rep. 42. John Wiley, New York

    Google Scholar 

  • Dinno A (2017) Conover-Iman Test of Multiple Comparisons Using Rank Sums. https://cran.r-project.org/web/packages/conover.test/conover.test.pdf

  • Dlugokencky E, Tans P (2016) National Oceanic and Atmospheric Administration – NOAA/ESRL. http://www.esrl.noaa.gov/gmd/ccgg/trends/

  • Fox J (2008) Applied regression analysis and generalized linear models, 2nd edn. Sage

  • Gianuca AT, Engelen J, Brans KI, Hanashiro FTT, Vanhamel M, Berg E (2018) Taxonomic, functional and phylogenetic metacommunity ecology of cladoceran zooplankton along urbanization gradients. Ecography 41:183–194

    Google Scholar 

  • Grimm NB, Foster D, Groffman PM, Grove MJ, Hopkinson CS, Nadelhoffer KJ, Pataki DE, Peters DP (2008) The changing landscape: ecosystem responses to urbanization and pollution across climatic and societal gradients. Front Ecol Environ 6:264–272

    Google Scholar 

  • Guerra JBSOA, Ribeiro JMP, Fernandez F, Bailey C, Barbosa SB, Neiva SS (2016) The adoption of strategies for sustainable cities: a comparative study between Newcastle and Florianópolis focused on urban mobility. J Clean Prod 113:681–694

    Google Scholar 

  • Han J, Meng X, Zhou X, Yi B, Liu M, Xiang W-N (2017) A long-term analysis of urbanization process, landscape change, and carbon sources and sinks: a case study in China’s Yangtze River Delta region. J Clean Prod 141:1040–1050. https://doi.org/10.1016/j.jclepro.2016.09.177

    Article  CAS  Google Scholar 

  • Hatt BE, Fletcher TD, Walsh CJ, Taylor SL (2004) The influence of urban density and drainage infrastructure on the concentrations and loads of pollutants in small streams. Environ Manag 34:112–124

    Google Scholar 

  • Hennemann MC, Petrucio MM (2011) Spatial and temporal dynamic of trophic relevant parameters in a subtropical coastal lagoon in Brazil. Environ Monit Assess. https://doi.org/10.1007/s10661-010-1833-5

  • Hilton RG, Galy A, Hovius N, Kao SJ, Horng MJ, Chen H (2012) Climatic and geomorphic controls on the erosion of terrestrial biomass from subtropical mountain forest. Glob Biogeochem Cycles 26(3):GB3014

    Google Scholar 

  • Ji X, Chen B (2017) Assessing the energy-saving effect of urbanization in China based on stochastic impacts by regression on population, affluence and technology (STIRPAT) model. J Clean Prod 163:S306–S314. https://doi.org/10.1016/j.jclepro.2015.12.002

    Article  Google Scholar 

  • Kandziora M, Burkhard B, Müller F (2013) Interactions of ecosystem properties. Ecosystem integrity and ecosystem service indicators: a theoretical matrix exercise. Ecol Indic 28:54–78. https://doi.org/10.1016/j.ecolind.2012.09.006

    Article  Google Scholar 

  • Karaer F, Küçükballi A (2006) Monitoring of water quality and assessment of organic pollution load in the Nïlüfer stream, Turkey. Environ Monit Assess 114:391–417

    CAS  Google Scholar 

  • Kaushal SS, Duan S, Doody TR, Haq S, Smith RM, Newcomer Johnson TA, Newcomb KD, Gorman J, Bowman N, Mayer PM, Wood KL, Belt KT, Stack WP (2017) Human-accelerated weathering increases salinization, major ions, and alkalinization in fresh water across land use. Appl Geochem. https://doi.org/10.1016/j.apgeochem.2017.02.006

  • Kaushal SS, Likens GE, Utz RM, Pace ML, Grese M, Yepsen M (2013) Increased river alkalinization in the eastern U.S. Environ Sci Technol 47:10302–10311

    CAS  Google Scholar 

  • Kaushal SS, Mayer PM, Vidon PG, Smith RM, Pennino MJ, Newcomer Johnson TA, Duan S, Welty C, Belt KT (2014) Land use and climate variability amplify carbon, nutrient, and contaminant pulses: a review with management implications. J Am Water Resour Assoc 50:3

    Google Scholar 

  • Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47(260):583–621. https://doi.org/10.1080/01621459.1952.10483441

    Article  Google Scholar 

  • Leite NK (2004) A biogeoquímica do rio Ji-Paraná, Rondônia. Universidade de São Paulo, Dissertation

    Google Scholar 

  • Lemes-Silva AL, Pagliosa PP, Petrucio MM (2014) Inter-and intra-guild patterns of food resource utilization by chironomid larvae in a subtropical coastal lagoon. Limnology 15:1–12. https://doi.org/10.1007/S10201-013-0407-Y

    Article  Google Scholar 

  • Li S, Luo J, Wu D, Xu YJ (2020) Carbon and nutrients as indictors of daily fluctuations of pCO2 and CO2 flux in a river draining a rapidly urbanizing area. Ecol Indic 109:105821. https://doi.org/10.1016/j.ecolind.2019.105821

    Article  CAS  Google Scholar 

  • Liu CP, Sheu BH (2003) Dissolved organic carbon in precipitation, throughfall, stemflow, soil solution, and stream water at the Guandaushi subtropical forest in Taiwan. For Ecol Manag 172:315–325

    Google Scholar 

  • Liu S, Raymond PA (2018) Hydrologic controls on pCO2 and CO2 efflux in US streams and rivers. Limnol Oceanography Letters 3:428–435. https://doi.org/10.1002/lol2.10095

    Article  CAS  Google Scholar 

  • Lorenzen CJ (1967) Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnol Oceanogr 12:343–346

    CAS  Google Scholar 

  • Morley SA, Karr JR (2002) Assessing and restoring the health of urban streams in the Puget Sound Basin. Conserv Biol 16(6):1498–1509

    Google Scholar 

  • Nascimento R (2002) Atlas Ambiental de Florianópolis. Instituto Larus, Florianópolis, BR (in Portuguese)

    Google Scholar 

  • Nelson KC, Palmer MA (2007) Stream temperature surges under urbanization and climate change: data, models, and responses. J Am water Resourc Assoc 43(2):440–452. https://doi.org/10.1111/j.1752-1688.2007.00034.X

    Article  Google Scholar 

  • Nessimian JL, Venticinque EM, Zuanon J, De-Marco-JR P, Gordo M, Fidelis L, Batista JD, Juen L (2008) Land use, habitat integrity and aquatic insect assemblages in central Amazonian streams. Hydrobiologia 614(1):117–131

    Google Scholar 

  • Neu V, Neill C, Krusche AV (2011) Gaseous and fluvial carbon export from an Amazon Forest watershed. Biogeochemistry. 105:133–147. https://doi.org/10.1007/s10533-011-9581-3

    Article  CAS  Google Scholar 

  • Ni M, Li S (2019) Biodegradability of riverine dissolved organic carbon in a Dry-Hot Valley region: initial trophic controls and variations in chemical composition. J Hydrol 574:430–435. https://doi.org/10.1016/j.jhydrol.2019.04.069

    Article  CAS  Google Scholar 

  • Parr TB, Smucker NJ, Bentsen CN, Neale MW (2016) Potential roles of past, present, and future urbanization characteristics in producing varied stream responses. Freshwater Sci 35:436–443

    Google Scholar 

  • Paul MJ, Meyer JL (2001) Streams in the urban landscape. Annu Rev Ecol Syst 32(1):333–365

    Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci Discuss 4(2):439–473

    Google Scholar 

  • Petrone KC (2010) Catchment export of carbon, nitrogen, and phosphorus across an agro-urban land use gradient, Swan-Canning River system, southwestern Australia. J Geophys Res 115:G01016. https://doi.org/10.1029/2009JG001051

    Article  CAS  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna https://www.R-project.org/

    Google Scholar 

  • Rasera MFL, Krusche AV, Richey JE, Ballester MV, Victória RL (2013) Spatial and temporal variability of pCO2 and CO2 efflux in seven Amazonian Rivers. Biogeochemistry 116(1–3):241–259

    CAS  Google Scholar 

  • Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M et al (2013) Global carbon dioxide emissions from inland waters. Nature 503(7476):355–359

    CAS  Google Scholar 

  • Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416(6881):617–620. https://doi.org/10.1038/416617a

    Article  CAS  Google Scholar 

  • Santos I, Fill HD, Sugai MRB, Buda H, Kishi R, Marone E, Lautert F L (2001) Hidrometria aplicada. Curitiba: LACTEC (Instituto de Tecnologia para o Desenvolvimento Centro Politécnico)

  • Savicky P (2015) Spearman’s rank correlation test. In https://cran.r-project.org/web/packages/pspearman/pspearman.pdf

  • Sawakuchi HO, Neu V, Ward ND, Barros MDLC, Valerio AM, Gagne-Maynard W et al (2017) Carbon dioxide emissions along the lower Amazon River. Front Mar Sci 4:76

    Google Scholar 

  • SIGSDS (2017) SIGSC Geographic Information System Publishing PhysicsWeb. http://sigsc.sds.sc.gov.br. Accessed 24 may 2016

  • Silva D, Ometto J, Lobo G, Lima WDP, Scaranello MA, Mazzi E, Rocha HRD (2007) Can land use changes alter carbon, nitrogen and major ion transport in subtropical Brazilian streams? Sci Agric 64(4):317–324

    Google Scholar 

  • Skirrow G (1975) The dissolved gases—carbon dioxide. In: Riley JP, Skirrow G (eds) Chemical Oceanography. Academic Press, London, pp 1–192

    Google Scholar 

  • Snoeyink VL, Jenkins D (1980) Water chemistry. Wiley, New York

    Google Scholar 

  • Sousa ES, Salimon CI, Figueiredo RO, Krusche AV (2011) Dissolved carbon in an urban area of a river in the Brazilian Amazon. Biogeochemistry 105:159–170. https://doi.org/10.1007/s10533-011-9613-z

    Article  CAS  Google Scholar 

  • Striegl RG, Dornblaser MM, Aiken GR, Wickland KP, Raymond PA (2007) Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska, 2001–2005. Water Resour Res 43:W02411. https://doi.org/10.1029/2006WR005201

    Article  CAS  Google Scholar 

  • Vidon P, Wagner LE, Soyeux E (2008) Changes in the character of DOC in streams during storms in two Midwestern watersheds with contrasting land uses. Biogeochemistry 88:257–270. https://doi.org/10.1007/s10533-008-9207-6

    Article  CAS  Google Scholar 

  • Vink S, Ford PW, Bormans M, Kelly C, Turley C (2007) Contrasting nutrient exports from a forested and an agricultural catchment in South-Eastern Australia. Biogeochemistry 84:247–264

    CAS  Google Scholar 

  • Wallin M, Buffam I, Öquist M, Laudon H, Bishop K (2010) Temporal and spatial variability of dissolved inorganic carbon in a boreal stream network: concentrations and downstream fluxes. J Geophys Res 115:G02014. https://doi.org/10.1029/2009JG001100

    Article  CAS  Google Scholar 

  • Wallin MB, Grabs T, Buffam I, Laudon H, Ågren A, Öquist MG, Bishop K (2013) Evasion of CO2 from streams – the dominant component of the carbon export through the aquatic conduit in a boreal landscape. Glob Chang Biol 19:785–797. https://doi.org/10.1111/gcb.12083

    Article  Google Scholar 

  • Walsh CJ, Roy A, Feminella JW, Cottingham PD, Groffman PM, Morgan RP (2005) The urban stream syndrome: current knowledge and the search for a cure. P. Silver (ed.), journal of the north American Benthological society. North American Benthological Society Lawrence KS 24(3):706–723

    Google Scholar 

  • Wang S, Zeng J, Huang Y, Shi C, Zhan P (2018) The effects of urbanization on CO2 emissions in the Pearl River Delta: a comprehensive assessment and panel data analysis. Appl Energy 228:1693–1706. https://doi.org/10.1016/j.apenergy.2018.06.155

    Article  Google Scholar 

  • Wang X, He Y, Yuan X, Chen H, Peng C, Zhu Q, Yue J, Ren H, Deng W, Liu H (2017) pCO2 and CO2 fluxes of the metropolitan river network in relation to the urbanization of Chongqing, China. J Geophys Res Biogeosci 122:470–486. https://doi.org/10.1002/2016JG003494

    Article  CAS  Google Scholar 

  • Wemple BC, Browning T, Ziegler AD, Celi J, Chun KPS, Jaramillo F et al (2017) Ecohydrological disturbances associated with roads: current knowledge, re-search needs and management concerns with reference to the tropics. Ecohydrology 11(3):1–23 e1881

    Google Scholar 

  • Westerhoff P, Anning D (2000) Concentrations and characteristics of organic carbon in surface water in Arizona: influence of urbanization. J Hydrol 236:202–222

    CAS  Google Scholar 

  • Wohl E, Hall RO, Lininger KB, Sutfin NA, Walters DM (2017) Carbon dynamics of river corridors and the effects of human alterations. Ecol Monogr 87:379–409

    Google Scholar 

  • Zuur AF, E Ieno N, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Google Scholar 

Download references

Acknowledgments

We thank the Santa Catarina Environmental Resources and Hydrometeorology Information Center (EPAGRI/CIRAM), Institute of Urban Planning of Florianópolis (IPUF), Nuclear Energy Center of Agriculture-Federal University of São Paulo (CENA-USP), Federal University of Rio de Janeiro (UFRJ), and Federal University of Santa Catarina (LAPAD-UFSC) for providing data, assistance for field, and laboratory equipments.

Funding

This study was funded by FAPESC, and the first author was supported by CAPES, both funding agencies from Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle das Neves Lopes.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 881 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

das Neves Lopes, M., Decarli, C.J., Pinheiro-Silva, L. et al. Urbanization increases carbon concentration and pCO2 in subtropical streams. Environ Sci Pollut Res 27, 18371–18381 (2020). https://doi.org/10.1007/s11356-020-08175-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-08175-8

Keywords

Navigation