Skip to main content

Advertisement

Log in

Pollution characteristics, sources, and health risk assessments of urban road dust in Kuala Lumpur City

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Urban road dust contains anthropogenic components at toxic concentrations which can be hazardous to human health. A total of 36 road dust samples from five different urban areas, a commercial (CM), a high traffic (HT), a park (GR), a rail station (LRT), and a residential area (RD), were collected in Kuala Lumpur City followed by investigation into compositions, sources, and human health risks. The concentrations of trace metals in road dust and the bioaccessible fraction were determined using inductively couple plasma-mass spectrometry (ICP-MS) while ion concentrations were determined using ion chromatography (IC). The trace metal concentrations were dominated by Fe and Al with contributions of 53% and 21% to the total trace metal and ion concentrations in road dust. Another dominant metal was Zn while the dominant ion was Ca2+ with average concentrations of 314 ± 190 μg g−1 and 3470 ± 1693 μg g−1, respectively. The most bioaccessible fraction was Zn followed by the sequence Sr > Cd > Cr > Cu > Ni > Co > Mn > As > V > Pb > Fe > Al > U. The results revealed that the highest trace metal and ion concentrations in road dust and in the bioaccessible fraction were found at the LRT area. Based on the source apportionment analysis, the major source of road dust was vehicle emissions/traffic activity (47%), and for the bioaccessible fraction, the major source was soil dust (50%). For the health risk assessments, hazard quotient (HQ) and cancer risk (CR) values for each element were < 1 and in the tolerable range (1.0E-06 to 1.0E-04), except for As for the ingestion pathway. This result suggests a low risk from non-carcinogenic and probable risk from carcinogenic elements, with higher health risks for children compared to adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbasi S, Keshavarzi B, Moore F, Turner A, Kelly FJ, Dominguez AO, Jaafarzadeh N (2019) Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County. Iran Environ Pollut 244:153–164

    Article  CAS  Google Scholar 

  • Al-Khashman OA (2004) Heavy metal distribution in dust, street dust and soils from the work place in Karak Industrial Estate, Jordan. Atmos Environ 38:6803–6812

  • Al-Khashman OA (2007) Determination of metal accumulation in deposited street dusts in Amman, Jordan. Environ Geochem Health 29:1–10

    Article  CAS  Google Scholar 

  • Ali MU, Liu G, Yousaf B, Abbas Q, Ullah H, Munir MAM, Fu B (2017) Pollution characteristics and human health risks of potentially (eco)toxic elements (PTEs) in road dust from metropolitan area of Hefei, China. Chemosphere 181:111–121

    Article  CAS  Google Scholar 

  • Amil N, Latif MT, Khan MF, Mohamad M (2016) Seasonal variability of PM2.5 composition and sources in the Klang Valley urban-industrial environment. Atmos Chem Phys 16:5357–5381

  • Aminiyan MM, Baalausha M, Mousavi R, Aminiyan FM, Hosseini H, Heydariyan A (2017) The ecological risk, source identification, and pollution assessment of heavy metals in road dust: a case study in Rafsanjan, SE Iran. Environ Sci Pollut Res 25:13382–13395

    Article  CAS  Google Scholar 

  • Amjadian K, Pirouei M, Mehr MR, Shakeri A, Rasool SK, Haji DI (2018) Contamination, health risk, mineralogical and morphological status of street dusts- case study: Erbil metropolis, Kurdistan region-Iraq. Environ Pollut 243(part B):1568–1578

    Article  CAS  Google Scholar 

  • Arslan H (2001) Heavy metals in street dust in Bursa. Turkey J Trace Microprobe Tech 19:439–445

    Article  CAS  Google Scholar 

  • Banerjee T, Murari V, Kumar M, Raju MP (2015) Source apportionment of airborne particulates through receptor modeling: Indian scenario. Atmos Res 164-165:167–187

    Article  CAS  Google Scholar 

  • Behera SN, Sharma M (2012) Transformation of atmospheric ammonia and acid gases into components of PM2.5: an environmental chamber study. Environ Sci Pollut Res 19:1187–1197

    Article  CAS  Google Scholar 

  • Bhuiyan MA, Dampare SB, Islam MA, Suzuki S (2015) Source apportionment and pollution evaluation of heavy metals in water and sediments of Buriganga River, Bangladesh, using multivariate analysis and pollution evaluation indices. Environ Monit Assess 187:4075

    Article  CAS  Google Scholar 

  • Cao Z, Yang Y, Lu J, Zhang C (2011) Atmospheric particle characterization, distribution, and deposition in Xi'an, Shaanxi Province, Central China. Environ Pollut 159:577–584

    Article  CAS  Google Scholar 

  • Cayir A, Belivermis M, Kilic O, Coskun M (2012) Heavy metal and radionuclide levels in soil around Afsin-Elbistan coal-fired thermal power plants, Turkey. Environ Earth Sci 67:1183–1190

    Article  CAS  Google Scholar 

  • Charlesworth S, Everett M, McCarthy R, Ordonez A, deMiguel EA (2003) A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry,West Midlands UK. Environ Int 29:563–573

    Article  CAS  Google Scholar 

  • Chen H, Lu X, Li LY, Gao T, Chang Y (2014) Metal contamination in campus dust of Xi'an China: A study based on multivariate statistics and spatial distribution. Sci Total Environ 484:27–35

    Article  CAS  Google Scholar 

  • DBKL, 2018. Kuala Lumpur Structure Plan: Environment. http://wwwdbklgovmy/pskl2020/english/environment/indexhtm Dewan Bandaraya Kuala Lumpur, Kuala Lumpur Access on 25 December 2018

  • Dehghani S, Moore F, Keshavarzi B, Hale BA (2017) Health risk implications of potentially toxic metals in street dust and surface soil of Tehran, Iran. Ecotoxicol Environ Saf 136:92–103

    Article  CAS  Google Scholar 

  • DOE, 2018. Point source industries in Kuala Lumpur. Department of Environment, Kuala Lumpur, Kuala Lumpur (unpublished report)

  • DOS, 2018. Federal Teritory of Kuala Lumpur @ a glance. https://wwwdosmgovmy/v1/index Department of Statistics Malaysia, Putrajaya Access on 25 December 2018

  • Drahota P, Raus K, Rychlíková E, Rohovec J (2017) Bioaccessibility of As, Cu, Pb, and Zn in mine waste, urban soil, and road dust in the historical mining village of Kaňk, Czech Republic. Environ Geochem Health 40:1495–1512

    Article  CAS  Google Scholar 

  • Duong TTT, Lee B-K (2011) Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. J Environ Manag 92:554–562

    Article  CAS  Google Scholar 

  • Faiz Y, Tufail M, Javed MT, Chaudhry MM, Siddique N (2009) Road dust pollution of Cd, Cu, Ni, Pb and Zn along Islamabad expressway, Pakistan. Microchem J 92:186–192

    Article  CAS  Google Scholar 

  • Gietl JK, Lawrence R, Thorpe AJ, Harrison RM (2010) Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road. Atmos Environ 44:141–146

    Article  CAS  Google Scholar 

  • Goix S, Uzu G, Oliva P, Barraza F, Calas A, Castet S, Point D, Masbou J, Duprey JL, Huayta C, Chincheros J, Gardon J (2016) Metal concentration and bioaccessibility in different particle sizes of dust and aerosols to refine metal exposure assessment. J Hazard Mater 317:552–562

    Article  CAS  Google Scholar 

  • Gunawardana C, Goonetilleke A, Egodawatta P, Dawes L, Kokot S (2012) Source characterisation of road dust based on chemical and mineralogical composition. Chemosphere 87:163–170

  • Han L, Zhuang G, Cheng S, Wang Y, Li J (2007) Characteristics of re-suspended road dust and its impact on the atmospheric environment in Beijing. Atmos Environ 41:7485–7499

    Article  CAS  Google Scholar 

  • Han NMIM, Latif MT, Othman M, Dominick D, Mohamad N, Juahir H, Tahir NM (2013) Composition of selected heavy metals in road dust from Kuala Lumpur city Centre. Environ Earth Sci 72:849–859

    Article  CAS  Google Scholar 

  • Han X, Lu X, Qinggeletu, Wu Y (2017) Health risks and contamination levels of heavy metals in dusts from parks and squares of an industrial city in semi-arid area of China. Int. J. Environ. Res. Public Health 14:1–12

    Google Scholar 

  • Hu X, Zhang Y, Luo J, Wang T, Lian H, Ding Z (2011) Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing. China Environ Pollut 159:1215–1221

    Article  CAS  Google Scholar 

  • Jaradat QM, Momani KA, Jbarah AQ, Massadeh A (2004) Inorganic analysis of dust fall and office dust in an industrial area of Jordan. Environ Res 96:139–144

    Article  CAS  Google Scholar 

  • Jayarathne A, Egodawatta P, Ayoko GA, Goonetilleke A (2017) Geochemical phase and particle size relationships of metals in urban road dust. Environ Pollut 230:218–226

    Article  CAS  Google Scholar 

  • Jiang Y, Chao S, Liu J, Yang Y, Chen Y, Zhang A, Cao H (2016) Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere 168:1658–1668

    Article  CAS  Google Scholar 

  • Jiries A (2001) Chemical composition of dew in Amman Jordan. Atmos Res 57:261–268

    Article  CAS  Google Scholar 

  • Joshi UM, Vijayaraghavan K, Balasubramanian R (2009) Elemental composition of urban street dusts and their dissolution characteristics in various aqueous media. Chemosphere 77:526–533

    Article  CAS  Google Scholar 

  • Kabadayi F, Cesur H (2010) Determination of cu, Pb, Zn, Ni, co, cd, and Mn in road dusts of Samsun City. Environ Monit Assess 168:241–253

    Article  CAS  Google Scholar 

  • Kastury F, Smith E, Juhasz AL (2017) A critical review of approaches and limitations of inhalation bioavailability and bioaccessibility of metal(loid)s from ambient particulate matter or dust. Sci Total Environ 574:1054–1074

    Article  CAS  Google Scholar 

  • Khanal R, Furumai H, Nakajima F, Yoshimura C (2018) Carcinogenic profile, toxicity and source apportionment of polycyclic aromatic hydrocarbons accumulated from urban road dust in Tokyo, Japan. Ecotoxicol Environ Saf 165:440–449

    Article  CAS  Google Scholar 

  • Khpalwak W, Jadoon WA, Abdel-dayem SM, Sakugawa H (2019) Polycyclic aromatic hydrocarbon in urban road dust, Afghanistan: implications for human health. Chemosphere 218:517–526

    Article  CAS  Google Scholar 

  • Kong S, Ji Y, Lu B, Chen L, Han B, Li Z, Bai Z (2011) Characterization of PM10 source profiles for fugitive dust in Fushun-a city famous for coal. Atmos Environ 45:5351–5365

    Article  CAS  Google Scholar 

  • Kurt-Karakus PB (2012) Determination of heavy metals in indoor dust from Istanbul, Turkey: Estimation of the health risk. Environ Int 50:47–55

    Article  CAS  Google Scholar 

  • Leung AOW, Nurdan SD-Y, Cheung KC, Wong MH (2008) Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in Southeast China. Environ Sci Technol 42:2674–2680

    Article  CAS  Google Scholar 

  • Li H, Yu S, Li G, Deng H, Luo X (2011) Contamination and source differentiation of Pb in park soils along an urban-rural gradient in Shanghai. Environ Pollut 159:3536–3544

    Article  CAS  Google Scholar 

  • Li HH, Chen LJ, Yu L, Guo ZB, Shan CQ, Lin JQ, Gu YG, Yang ZB, Yang YX, Shao JR, Zhu XM, Cheng Z (2017) Pollution characteristics and risk assessment of human exposure to oral bioaccessibility of heavy metals via urban street dusts from different functional areas in Chengdu, China. Sci Total Environ 586:1076–1084

    Article  CAS  Google Scholar 

  • Li X, Poon CS, Liu PS (2001) Heavy metals contamination of urban soils and street dusts in Hong Kong. Appl Geochem 16:1361–1368

    Article  CAS  Google Scholar 

  • Li X, Zhang M, Gao Y, Zhang Y, Zhang X, Yan X, Wang S, Yang R, Liu B, Yu H (2018) Urban street dust bound 24 potentially toxic metal/metalloids (PTMs) from Xining valley-city, NW China: spatial occurrences, sources and health risks. Ecotoxicol Environ Saf 162:474–487

    Article  CAS  Google Scholar 

  • Liang J, Feng C, Zeng G, Gao X, Zhong M, Li X, Li X, He X, Fang Y (2017) Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environ Pollut 225:681–690

    Article  CAS  Google Scholar 

  • Limbeck A, Handler M, Puls C, Zbiral J, Bauer H, Puxbaum H (2009) Impact of mineral components and selected trace metals on ambient PM10 concentrations. Atmos Environ 43:530–538

    Article  CAS  Google Scholar 

  • Liu Y, Ma J, Yan H, Ren Y, Wang B, Lin C, Liu X (2016) Bioaccessibility and health risk assessment of arsenic in soil and indoor dust in rural and urban areas of Hubei province, China. Ecotoxicol Environ Saf 126:14-22. https://doi.org/10.1016/j.ecoenv.2015.11.037

  • Liu B, Wu J, Zhang J, Wang L, Yang J, Liang D, Dai Q, Bi X, Feng Y, Zhang Y, Zhang Q (2017) Characterization and source apportionment of PM2.5 based on error estimation from EPA PMF 5.0 model at a medium city in China. Environ Pollut 222:10–22

    Article  CAS  Google Scholar 

  • Liu E, Yan T, Birch G, Zhu Y (2014) Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China. Sci Total Environ 476-477:522–531

    Article  CAS  Google Scholar 

  • Liu M, Cheng SB, Ou DN, Hou LJ, Gao L, Wang LL, Xie YS, Yang Y, Xu SY (2007) Characterization, identification of road dust PAHs in Central Shanghai areas, China. Atmos Environ 41:8785–8795

    Article  CAS  Google Scholar 

  • Lu X, Zhang X, Li LY, Chen H (2018) Assessment of metals pollution and health risk in dust from nursery schools in Xi'an, China. Environ Res 128:27–34

    Article  CAS  Google Scholar 

  • Luo X, Yu S, Zhu Y, Li X (2012) Trace metal contamination in urban soils of China. Sci Total Environ 421-422:17–30

    Article  CAS  Google Scholar 

  • Mathee A, Kootbodien T, Kapwata T, Naicker N (2018) Concentration of arsenic and lead in residential garden soil from four Johannesburg neighborhoods. Environ Res 167:524–527

    Article  CAS  Google Scholar 

  • McCartney M, Davidson CM, Howe SE, Keating GE (2000) Temporal changes in the distribution of natural radionuclides along the Cumbrian coast following the reduction of discharges from a phospheric acid production plant. J Environ Radioact 49:279–291

    Article  CAS  Google Scholar 

  • McKenzie ER, Wong CM, Green PG, Kayhanian M, Young TM (2008) Size depended elemental composition of road-associated particles. Sci Total Environ 398:145–153

    Article  CAS  Google Scholar 

  • Men C, Liu R, Xu F, Wang Q, Guo L, Shen Z (2018) Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China. Sci Total Environ 612:138–147

    Article  CAS  Google Scholar 

  • Morawska L, Ristovski Z, Jayaratne ER, Keogh DU, Ling X (2008) Ambient nano and ultrafine particles from motor vehicle emissions: characteristics, ambient processing and implications on human exposure. Atmos Environ 42:8113–8138

    Article  CAS  Google Scholar 

  • Okorie A, Entwistle J, Dean JR (2012) Estimation of daily intake of potentially toxic elements from urban street dust and the role of oral bioaccessibility testing. Chemosphere 86:460–467

    Article  CAS  Google Scholar 

  • Othman M, Latif MT, Matsumi Y (2019) The exposure of children to PM2.5 and dust in indoor and outdoor school classrooms in Kuala Lumpur city Centre. Ecotoxicol Environ Saf 170:739–749

  • Padoan E, Romè C, Ajmone-Marsan F (2017) Bioaccessibility and size distribution of metals in road dust and roadside soils along a peri-urban transect. Sci Total Environ 601-602:89–98

    Article  CAS  Google Scholar 

  • Patinha C, Duraes N, Sausa P, Dias AC, Reis AP, Noack Y, da Sila EF (2015) Assessment of the influence of traffic-related particles in urban dust using sequential selective extraction and oral bioaccessibility test. Environ Geochem Health 37:707–724

    Article  CAS  Google Scholar 

  • Qing YM, Turpin BJ, Jong HL, Polidori A, Weisel CP, Morandi M, Colome S, Zhang J, Stock T, Winer A (2007) How does infiltration behavior modify the composition of ambient PM 2.5 in indoor spaces? An analysis of RIOPA data. Environ Sci Technol 41:7315–7321

    Article  CAS  Google Scholar 

  • Rahman SA, Hamzah MS, Wood AK, Elias MS, Salim NAA, Sanuri E (2011) Sources apportionment of fine and coarse aerosol in Klang Valley, Kuala Lumpur using positive matrix factorization. Atmos Pollut Res 2:197–206

    Article  CAS  Google Scholar 

  • Ramírez O, de la Campa AMS, Amato F, Moreno T, Silva LF, de la Rosa JD (2018) Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity. Sci Total Environ 652:434–446

    Article  CAS  Google Scholar 

  • Rasmussen PE, Beauchemin S, Nugent M, Dugandzic R, Lanouette M, Chenier M (2008) Influence of matrix composition on the bioaccessibility of copper, zinc, and nickel in urban residential dust and soil. Hum Ecol Risk Assess 14:351–371

    Article  CAS  Google Scholar 

  • Rastmanesh F, Mousavi M, Zarasvandi A, Edraki M (2017) Investigation of elemental enrichment and ecological risk assessment of surface soils in two industrial port cities, Southwest Iran. Environ Earth Sci 76:1–13

    Article  CAS  Google Scholar 

  • Rodrigues JLG, Bandeira MJ, Araújo CFS, dos Santos NR, Anjos ALS, Koin NL, Pereira LC, Oliveira SSP, Mergler D, Menezes-Filho JA (2018) Manganese and lead levels in settled dust in elementary schools are correlated with biomarkers of exposure in school-aged children. Environ Pollut 236:1004–1013

    Article  CAS  Google Scholar 

  • Shi D, Lu X (2018) Accumulation degree and source apportionment of trace metals in smaller than 63 μm road dust from the areas with different land uses: a case study of Xi'an, China. Sci Total Environ 636:1211–1218

    Article  CAS  Google Scholar 

  • Shi G, Chen Z, Bi C, Wang L, Teng J, Li Y, Xu S (2011) A comparative study of health risk of potentially toxic metals in urban and suburban road dust in the most populated city of China. Atmos Environ 45:764–771

    Article  CAS  Google Scholar 

  • Shi G, Chen Z, Xu S, Zhang J, Wang L, Bi C, Teng J (2008) Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environ Pollut 156:251–260

    Article  CAS  Google Scholar 

  • Sulong NA, Latif MT, Khan MF, Amil N, Ashfold MJ, Wahab MIA, Chan KM, Sahani M (2017) Source apportionment and health risk assessment among specific age groups during haze and non-haze episodes in Kuala Lumpur, Malaysia. Sci Total Environ 601-602:556–570

    Article  CAS  Google Scholar 

  • Tang Z, Chai M, Cheng J, Jin J, Yang Y, Nie Z, Huang Q, Li Y (2017) Contamination and health risks of heavy metals in street dust from a coal-mining city in eastern China. Ecotoxicol Environ Saf 138:83–91

    Article  CAS  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford

    Google Scholar 

  • Tian S, Liang T, Li K, Wang L (2018) Source and path identification of metals pollution in a mining area by PMF and rare earth element patterns in road dust. Sci Total Environ 633:958–966

    Article  CAS  Google Scholar 

  • Urrutia-Goyes R, Hernandez N, Carrillo-Gamboa O, Nigam KDP, Ornelas-Soto N (2018) Street dust from a heavily-populated and industrialized city: evaluation of spatial distribution, origins, pollution, ecological risks and human health repercussions. Ecotoxicol Environ Saf 159:198–204

    Article  CAS  Google Scholar 

  • USEPA, 2010a. Regional screening level. Available online at http://www.epa.gov/region9/superfund/prg/index.html. Accessed 12 February 2019

  • USEPA (2010b) Risk assessment guidance for superfund volume 1, human health evaluation manual (part a). Office of Emergency and Remedial Response. United States Environmental Protection Agency, Washington

    Google Scholar 

  • USEPA, 2017. Standard operating procedure for an in vitro bioaccessibility assay for Lead and arsenic in soil. OLEM 9200.2-164. United States Environmental Protection Agency, Washington

  • Valido IH, Padoan E, Moreno T, Querol X, Font O, Amato F (2018) Physico-chemical characterization of playground sand dust, inhalable and bioaccessible fractions. Chemosphere 190:454–462

    Article  CAS  Google Scholar 

  • Wang J, Li S, Cui X, Li H, Qian X, Wang C, Sun Y (2016) Bioaccessibility, sources and health risk assessment of trace metals in urban park dust in Nanjing, Southeast China. Ecotoxicol Environ Saf 128:161–170

    Article  CAS  Google Scholar 

  • Xie R K, Seip H M, Liu L, Zhang D S (2009) Characterization of individual airborne particles in Taiyuan City, China. Air Qual Atmos Health 2 (3):123-131. https://doi.org/10.1007/s11869-009-0039-x

  • Yu B, Wang Y, Zhou Q (2014) Human health risk assessment based on toxicity characteristic leaching procedure and simple bioaccessibility extraction test of toxic metals in urban street dust of Tianjin, China. PLoS One 9:1–9

    Google Scholar 

  • Yu W, Liu R, Xu F, Men C, Shen Z (2016) Identifications and seasonal variations of sources of polycyclic aromatic hydrocarbons (PAHs) in the Yangtze River estuary, China. Mar Pollut Bull 104:347–354

    Article  CAS  Google Scholar 

  • Zhao P, Feng Y, Zhu T, Wu J (2006) Characterizations of resuspended dust in six cities of North China. Atmos Environ 40:5807–5814

    Article  CAS  Google Scholar 

  • Zheng N, Liu J, Wang Q, Liang Z (2010) Health risk assessment of heavy metals exposure to street dust in the zinc smelting district, Northeast of China. Environ Geochem Health 35:726–733

    Google Scholar 

Download references

Acknowledgments

Special thanks to Mrs. Azwani Alias for sampling assistance and Dr. Rose Norman for proof reading this manuscript.

Funding

Universiti Kebangsaan Malaysia and Ministry of Education provided research funding under research grant FRGS/1/2018/WAB05/UKM/01/1. This research is part of the project entitled Disaster Resilient Cities: Forecasting Local Level Climate Extremes and Physical Hazards for Kuala Lumpur supported by the Research and Innovation Bridges Programme of the Newton Ungku Omar Fund (XX-2017-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murnira Othman.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Othman, M., Latif, M.T. Pollution characteristics, sources, and health risk assessments of urban road dust in Kuala Lumpur City. Environ Sci Pollut Res 27, 11227–11245 (2020). https://doi.org/10.1007/s11356-020-07633-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-07633-7

Keywords

Navigation