Skip to main content

Advertisement

Log in

Development, larvicide activity, and toxicity in nontarget species of the Croton linearis Jacq essential oil nanoemulsion

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, the essential oil (EO) from leaves of Croton linearis Jacq was extracted and characterized by GC/MS. The EO hydrophilic-lipophilic balance required (rHLB) for nanoemulsion (NE) development was determined by the Griffin’ method. For evaluating the larvicidal effect against Aedes aegypti, the preparation process of NE was optimized, using a central composite design. It was also evaluated the possible toxic effect of NE in nontarget species. The leaves of C. linearis contain 1.50% of EO, enclosing 61 volatile compounds, mainly eucalyptol (26.66%). The best surfactant, oil:water ratio (4.5–5.0-91.5; % w:w:w), allows to achieve the optimal NE, using a stirring speed of 800 rpm, the addition rate of 0.5 ml/min, and a stirring time of 30 min. NE (with particle size = 163 nm) showed a larvicide effect (LC50 = 17.86 μg/mL) more potent than the whole EO (LC50 = 64.24 μg/mL). NE showed neither hemolytic effect nor cytotoxicity, and it was classified as a nontoxic product, according to the OECD class toxicity test (IC50 > 2000 mg/kg). This product arises in a new green bio-larvicide that could be used for mosquito control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander IC, Pascoe KO, Manchard P, Williams LAD (1991) An insecticidal diterpene from Croton linearis. Phytochemistry 30:1801–1803

    CAS  Google Scholar 

  • Angajala G, Ramya R, Subashini R (2014) In-vitro anti-inflammatory and mosquito larvicidal efficacy of nickel nanoparticles phytofabricated from aqueous leaf extracts of Aegle marmelos Correa. Acta Trop 135:19–26

    CAS  Google Scholar 

  • Anjali CH, Sharma Y, Mukherjee A, Chandrasekaran N (2012) Neem oil (Azadirachta indica) nanoemulsion -a potent larvicidal agent against Culex quinquefasciatus. Pest Manag Sci 68:158–163

    CAS  Google Scholar 

  • Bai L, McClements DJ (2016) Extending emulsion functionality: post-homogenization modification of droplet properties. Processes 4:1–18

    Google Scholar 

  • Balasubramani S, Rajendhiran T, Kumar MA, Kumari BDK (2017) Development of nanoemulsion from Vitex negundo L. essential oil and their efficacy of antioxidant, antimicrobial and larvicidal activities (Aedes aegypti L.). Environ Sci Pollut Res 24(17):15125–15133

    CAS  Google Scholar 

  • Benelli G, Pavela R, Petrelli R, Cappellacci L, Canale A, Senthil-Nathan S, Maggi F (2018) Not just popular spices! Essential oils from Cuminum cyminum and Pimpinella anisum are toxic to insect pests and vectors without affecting non-target invertebrates. Ind Crop Prod 124:236–243

    CAS  Google Scholar 

  • Benelli G, Pavela R, Petrelli R, Kamgang NF, Cappellacci L, Lupidi G, Quassinti L, Bramucci M, Sut S, Dall’Acqua S, Canale A, Maggi F (2019) Carlina oxide from Carlina acaulis root essential oil acts as a potent mosquito larvicide. Ind Crop Prod 137:356–366

    CAS  Google Scholar 

  • Block S, Baccelli C, Tinant B, Van Mervelt L, Rozenberg R, Habib JJL, Llabrès G, De Pauw-Gillet MC (2004) Diterpenes from the leaves of Croton zambesicus. Phytochemistry 65:1165–1171

    CAS  Google Scholar 

  • Braga IA, Valle D (2007) Aedes aegypti: insecticides, mechanisms of action and resistance [in português]. Epidemiologia e Serviços de Saúde 16(4):179–293

    Google Scholar 

  • Cheng M, Chen H, Wang Y, Xu H, Hhe B, Han J, Zhang Z (2014) Optimize synthesis of glycyrrhetinic acid-modified chitosan 5-fluorouracil nanoparticles and their characteristics. Int J Nanomedicine 9:695–710

    Google Scholar 

  • Conti B, Canale A, Bertoli A, Gozzini F, Pistelli L (2010) Essential oil composition and larvicidal activity of six Mediterranean aromatic plants against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol Res 107:1455–1461

    Google Scholar 

  • Cutler SJ, Cutler HG (2000) Biologically active natural products: pharmaceuticals. CRC Press, New York

    Google Scholar 

  • da Cunha SSL, Andrade GS, da Silva CK, Deitos FD (2014) Avaliação da atividade larvicida de extratos obtidos do caule de Croton linearifolius Mull. Arg. (Euphorbiaceae) sobre larvas de Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). Biotemas 27:79–85

    Google Scholar 

  • Delgado AV, González-Caballero F, Hunter RJ, Koopal LK, Lyklema J (2007) Measurement and interpretation of electrokinetic phenomena. Pure Appl Chem 309:194–224

    CAS  Google Scholar 

  • Dias N, Moraes DFC (2014) Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides: a review. Parasitol Res 113:565–592

    Google Scholar 

  • Finney DJ (1971) Probit analysis, Edn 3 edn. Cambridge University press, Cambridge

    Google Scholar 

  • Freitas FP, Freitas SP, Lemosb GCS, Ivo JC, Vieira IJC, Gravina GA, Lemosa FJA (2010) Comparative Larvicidal activity of essential oils from three medicinal plants against Aedes aegypti L. Chem Biodivers 7:2801–2808

    CAS  Google Scholar 

  • Gabrielson J, Lindberg N, Lindstedt T (2002) Multivariate methods in pharmaceutical applications. J Chemom 16:141–160

    Google Scholar 

  • Griffin WC (1949) Classification of surface-active agents by HLB. J Soc Cosmet Chem 1:311–326

    Google Scholar 

  • Han X, Parker TL (2017) Lemongrass (Cymbopogon flexuosus) essential oil demonstrated anti-inflammatory effect in pre-inflamed human dermal fibroblasts. Biochimie Open 4:107–111

    Google Scholar 

  • Isman MS (2019) Botanical insecticides in the twenty-first century-fulfilling their promise? Annu Rev Entomol. https://doi.org/10.1146/annurev-ento-011019-025010

  • ISO 10993-5 (2009) International Organization for Standardization. Biological evaluation of medical devices- Part 5: Tests for in vitro cytotoxicity

  • ISO 22412 (2008) International Organization for Standardization. Particle Size Analysis: Dynamic Light Scattering (DLS)

  • Jimenez PC, Fortier SC, Lotufo TMC, Pessoa C, Moraes MEA, Moraes MO, Costa-Lotufo LV (2003) Biological activity in extract of ascidians (Tunicata ascidiacea) from the northeastern Brazilian coast. J Exp Mar Biol Ecol 287:93–101

    Google Scholar 

  • Komaiko J, McClements DJ (2015) Low-energy formation of edible nanoemulsions by spontaneous emulsification: factors influencing particle size. J Food Eng 146:122–128

    CAS  Google Scholar 

  • Lafourcade PA, Keita H, Pereira ST, Silva LE, Domingo RAL, Amazonas SMJ, Tavares CJT, Rodriguez AJR (2018) Cassia grandis lf nanodispersion is a hypoglycemic product with a potent a-glucosidase and pancreatic lipase inhibitor effect. Saudi Pharmaceutical Journal 27:191–199

    Google Scholar 

  • Lomonaco D, Santiago GMP, Ferreira YS, Arriaga AMC, Mazzetto SE, Melec G, Vasapollo G (2009) Study of technical CNSL and its main components as new green larvicides. Green Chem. https://doi.org/10.1039/b811504d

  • Lu D, Rhodes DG (2000) Mixed composition films of spans and tween 80 at the air-water Interface. Langmuir 16:8107–8112

    CAS  Google Scholar 

  • McClements DJ (2012) Advances in the fabrication of emulsions with enhanced functionality using structural design principles. Curr Opin Colloid Interface Sci 17:235–245

    CAS  Google Scholar 

  • McClements DJ (2015) Food emulsions: principles, practices, and techniques, 3rd edn. CRC Press INC, Washington

    Google Scholar 

  • Merino N, Berdejo D, Bento R, Salman H, Lanz M, Maggi F, Sánchez GS, García GD, Pagán R (2019) Antimicrobial efficacy of Thymbra capitata L. Cav. Essential oil loaded in self-assembled zein nanoparticles in combination with heat. Ind Crop Prod 133:98–104

    CAS  Google Scholar 

  • Morais SM, Cavalcanti ESB, Bertini LM, Oliveira CLL, Rodrigues JRB, Leal-Cardoso JH (2006) Larvicidal activity of essential oils from Brazilian Croton species against Aedes aegypti L. J Am Mosq Control Assoc 22:161–164

    CAS  Google Scholar 

  • Neves IA, Camara CAG (2012) Volatile constituents of two Croton species from Caatinga biome of Pernambuco – Brazil. Rec Nat Prod 6:161–165

    CAS  Google Scholar 

  • OCDE 423 (2001) OECD, guideline for testing of chemicals. Acute Oral Toxicity-Acute Toxic Class Method 423:2012

    Google Scholar 

  • Oliveira AE, Lobato DJ, Rodriguez AJR, Soares CRA, Rocha FC, Picanço SRN, Ferreira ARM, Santos K, da Conceição CE, de Oliveira RLA, Kelecom A, Fernandes PC, Tavares CJC (2016) Development of a Larvicidal Nanoemulsion with Pterodon emarginatus Vogel oil. PLoS One 11:e0145835

    Google Scholar 

  • Ostertag F, Weiss J, McClements DJ (2012) Low-energy formation of edible nanoemulsions: factors influencing droplet size produced by emulsion phase inversion. J Colloid Interface Sci 388:95–102

    CAS  Google Scholar 

  • Pavela R (2015) Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crop Prod 76(2015):174–187

    CAS  Google Scholar 

  • Pavela R, Benelli G, Pavoni L, Bonacucina G, Cespi M, Cianfaglione K, Bajalan I, Reza MM, Lupidi G, Romano D, Canale A, Maggi F (2019a) Microemulsions for delivery of Apiaceae essential oils-towards highly effective and eco-friendly mosquito larvicides. Ind Crop Prod 129:631–640

    CAS  Google Scholar 

  • Pavela R, Pavoni L, Bonacucina G, Cespi M, Kavallieratos NG, Cappellacci L, Petrelli R, Maggi F, Benelli G (2019b) rationale for developing novel mosquito larvicides based on isofuranodiene microemulsions. J Pest Sci 92(2):909–921

    Google Scholar 

  • Pequeno NF, Soto-Blanco B (2006) Toxicidade in vitro de plantas tóxicas: avaliação do teste de ação hemolítica. Acta Sci Vet 34(1):45–48

    Google Scholar 

  • Pinho-da-Silva L, Mendes-Maia PV, do Nascimento GTM, Cruz JS, de Morais SM, Coelho-de-Souza AN, Lahlou S, Leal-Cardoso JH (2010) Croton sonderianus essential oil samples distinctly affect rat airway smooth muscle. Phytomedicine 17:721–725

    CAS  Google Scholar 

  • Prophiro JS, Silva MAN, Kanis LA, Rocha LCBP, Duque-Luna JE, Silva OS (2012) First report on the susceptibility of wild Aedes aegypti (Diptera: Culicidae) using Carapa guianensis (Meliaceae) and Copaifera sp. (Leguminosae). Parasitol Res 110:699–705

    Google Scholar 

  • Radulovic’ N, Mananjarasoa E, Harinantenaina L, Yoshinori A (2006) Essential oil composition of four Croton species from Madagascar and their chemotaxonomy. Biochem Syst Ecol 34:648–653

    Google Scholar 

  • Rattan RS (2010) Mechanism of action of secondary insecticidal metabolites of plant origin. Crop Prot 29:913–920

    CAS  Google Scholar 

  • Regnault-Roger C, Vincent C, Arnason JT (2012) Essential oils in insect control: low-risk products in a high-stakes world. Annu Rev Entomol 57:405–424

    CAS  Google Scholar 

  • Ryan MF, Byrne O (1988) Plant-insect coevolution and inhibition of acetylcholinesterase. J Chem Ecol 14:1965–1975

    CAS  Google Scholar 

  • Rodriguez AJR, Prada AL, Duarte JL, Keita H, da Silva HR, Ferreira AM, Sosa EH, Carvalho JCT (2017) Development, stability, and in vitro delivery profile of new loratadine-loaded nanoparticles. Saudi Pharm J 25:1158–1168

    Google Scholar 

  • Saberi AH, Fang Y, McClements DJ (2013) Fabrication of vitamin E-enriched nanoemulsions: factors affecting particle size using spontaneous emulsification. J Colloid Interface Sci 391:95–102

    CAS  Google Scholar 

  • Sharifi-Rad J, Sureda A, Tenore GC, Daglia M, Sharifi-Rad M, Valussi M, Tundis R, Sharifi-Rad M, Loizzo MR, Ademiluyi AO, Sharifi-Rad R, Ayatollahi SA, Iriti M (2017) Biological activities of essential oils: from plant Chemoecology to traditional healing systems. Molecules 22(1):E70

    Google Scholar 

  • Silva SLC, Carvalho MG, Gualberto SA, Carneiro-Torres DS, Vasconcelos KC, Oliveira NF (2010) Bioatividade do extrato etanólico do caule de Croton linearifolius Mull. Arg. (Euphorbiaceae) sobre Cochliomyia macellaria (Diptera: Calliphoridae). Acta Veterinaria Brasilica 4:252–258

    Google Scholar 

  • Smitt O, Högberg HE (2002) Synthesis of a prenyl bisabolene diterpene, a natural insecticide from Croton linearis, and of the bisabolene sesquiterpenes (−)-delobane and (−)-epidelobane. Tetrahedron 58:7691–7700

    CAS  Google Scholar 

  • Solans C, Solé I (2012) Nano-emulsions: formation by low-energy methods. Curr Opin Colloid Interface Sci 17:246–254

    CAS  Google Scholar 

  • Tadros T (2013) Encyclopedia of colloid and Interface science. Springer, New York

    Google Scholar 

  • Throne JE, Weaver DK, Baker JE (1995) Probit analysis: assessing goodness-of-fit based on backtransformation and residuals. J Econ Entomol 88(5):1513–1516. https://doi.org/10.1093/jee/88.5.1513

    Article  Google Scholar 

  • Vitali LA, Beghelli D, Biapa NPC, Bistoni O, Cappellacci L, Damiano S, Lupidi G, Maggi F, Orsomando G, Papa F, Petrelli D, Petrelli R, Quassinti L, Sorci L, Zadeh MM, Bramucci M (2016) Diverse biological effects of the essential oil from Iranian Trachyspermum ammi. Arab J Chem 9(6):775–786

    CAS  Google Scholar 

  • World Health Organization (WHO) (2005) Guidelines for laboratory and field-testing of mosquito larvicidal. World Health Organization Communicable disease control, prevention, and eradication. World Health Organization pesticide evaluation scheme. Geneva, Switzerland

  • World Health Organization (2016) Monitoring and managing insecticide resistance in Aedes mosquito populations. Interim guidance for entomologists. WHO/ZIKV/VC/16.1. WHO Press, 20 Avenue Appia, 1211 Geneva 27, Switzerland

  • World Health Organization (2018) Plan of action on entomology and vector control 2018-2023. 70th session of the regional committee of who for the Americas, Washington

    Google Scholar 

  • Xu X, Al-Ghabeish M, Rahman Z, Krishnaiah YS, Yerlikaya F, Yang Y, Manda P, Hunt RL, Khan MA (2015) Formulation and process factors influencing product quality and in vitro performance of ophthalmic ointments. Int J Pharm 493:412–425

    CAS  Google Scholar 

Download references

Funding

Authors want to thanks to Coordination for the Improvement of Higher Education Personnel (CAPES) and the Foundation for Research Support Foundation of the Amapá State (FAPEAP), Brazil. Grant number 23038.000516/2013-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesus Rafael Rodriguez Amado.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Giovanni Benelli

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amado, J.R.R., Prada, A.L., Diaz, J.G. et al. Development, larvicide activity, and toxicity in nontarget species of the Croton linearis Jacq essential oil nanoemulsion. Environ Sci Pollut Res 27, 9410–9423 (2020). https://doi.org/10.1007/s11356-020-07608-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-07608-8

Keywords

Navigation